期刊文献+

Quantum Molecular Dynamics Simulations of Warm Dense Li Plasma

Quantum Molecular Dynamics Simulations of Warm Dense Li Plasma
下载PDF
导出
摘要 The behavior of Li warm plasma (i.e. T in 1 eV range) is reported for a range of temperatures () and densities ( ), spanning moderate to dense conditions. Quantum Molecular Dynamics (QMD), in Carr-Parinello approach, is used to advance and equilibrate an ensemble of 54 Li atoms at desired temperature and density. The charge distribution and ions positions are further input in a DFT finite temperature calculation, producing, self consistently, a large number of energy levels (300 - 1500) and occupation numbers, from which real and imaginary parts of the dielectric function are obtained. Optical quantities like index of refraction, reflectivity, absorption coefficients and Rosseland means are deduced. Zero frequency static conductivity , diffusion coefficients and a Hugoniot curve are calculated. The behavior of Li warm plasma (i.e. T in 1 eV range) is reported for a range of temperatures () and densities ( ), spanning moderate to dense conditions. Quantum Molecular Dynamics (QMD), in Carr-Parinello approach, is used to advance and equilibrate an ensemble of 54 Li atoms at desired temperature and density. The charge distribution and ions positions are further input in a DFT finite temperature calculation, producing, self consistently, a large number of energy levels (300 - 1500) and occupation numbers, from which real and imaginary parts of the dielectric function are obtained. Optical quantities like index of refraction, reflectivity, absorption coefficients and Rosseland means are deduced. Zero frequency static conductivity , diffusion coefficients and a Hugoniot curve are calculated.
机构地区 P.O. Box
出处 《Open Journal of Modelling and Simulation》 2017年第4期189-217,共29页 建模与仿真(英文)
关键词 QMD FTDFT OPACITY Rosseland QMD FTDFT Opacity Rosseland
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部