摘要
A technique is developed for finding a closed form expression for the cumulative distribution function of the maximum value of the objective function in a stochastic linear programming problem, where either the objective function coefficients or the right hand side coefficients are continuous random vectors with known probability distributions. This is the “wait and see” problem of stochastic linear programming. Explicit results for the distribution problem are extremely difficult to obtain;indeed, previous results are known only if the right hand side coefficients have an exponential distribution [1]. To date, no explicit results have been obtained for stochastic c, and no new results of any form have appeared since the 1970’s. In this paper, we obtain the first results for stochastic c, and new explicit results if b an c are stochastic vectors with an exponential, gamma, uniform, or triangle distribution. A transformation is utilized that greatly reduces computational time.
A technique is developed for finding a closed form expression for the cumulative distribution function of the maximum value of the objective function in a stochastic linear programming problem, where either the objective function coefficients or the right hand side coefficients are continuous random vectors with known probability distributions. This is the “wait and see” problem of stochastic linear programming. Explicit results for the distribution problem are extremely difficult to obtain;indeed, previous results are known only if the right hand side coefficients have an exponential distribution [1]. To date, no explicit results have been obtained for stochastic c, and no new results of any form have appeared since the 1970’s. In this paper, we obtain the first results for stochastic c, and new explicit results if b an c are stochastic vectors with an exponential, gamma, uniform, or triangle distribution. A transformation is utilized that greatly reduces computational time.
作者
Afrooz Ansaripour
Adriana Mata
Sara Nourazari
Hillel Kumin
Afrooz Ansaripour;Adriana Mata;Sara Nourazari;Hillel Kumin(Penn State University, State College, PA, USA;CAF Development Bank, Caracas, Venezuela;California State University at Long Beach, Long Beach, CA, USA;University of Oklahoma, Norman, OK, USA)