期刊文献+

Runs and Patterns in a Sequence of Markov Dependent Bivariate Trials

Runs and Patterns in a Sequence of Markov Dependent Bivariate Trials
下载PDF
导出
摘要 In this paper we consider a sequence of Markov dependent bivariate trials whose each component results in an outcome success (0) and failure (1) i.e. we have a sequence {(Xn/Yn), n>=0} of S={(0/0),(0/1),(1/0),(1/1)}-valued Markov dependent bivariate trials. By using the method of conditional probability generating functions (pgfs), we derive the pgf of joint distribution of (X0n,k10,X1n,k11;Y0n,k20,Y1n,k21) where for i=0,1,Xin,k1i denotes the number of occurrences of i-runs of length k1i in the first component and Yin,k2i denotes the number of occurrences of i-runs of length k2i in the second component of Markov dependent bivariate trials. Further we consider two patterns Λ1 and Λ2 of lengths k1 and k2 respectively and obtain the pgf of joint distribution of (Xn,Λ 1,Yn,Λ2 ) using method of conditional probability generating functions where Xn,Λ1(Yn,Λ2) denotes the number of occurrences of pattern Λ1(Λ2 ) of length k1 (k2) in the first (second) n components of bivariate trials. An algorithm is developed to evaluate the exact probability distributions of the vector random variables from their derived probability generating functions. Further some waiting time distributions are studied using the joint distribution of runs. In this paper we consider a sequence of Markov dependent bivariate trials whose each component results in an outcome success (0) and failure (1) i.e. we have a sequence {(Xn/Yn), n>=0} of S={(0/0),(0/1),(1/0),(1/1)}-valued Markov dependent bivariate trials. By using the method of conditional probability generating functions (pgfs), we derive the pgf of joint distribution of (X0n,k10,X1n,k11;Y0n,k20,Y1n,k21) where for i=0,1,Xin,k1i denotes the number of occurrences of i-runs of length k1i in the first component and Yin,k2i denotes the number of occurrences of i-runs of length k2i in the second component of Markov dependent bivariate trials. Further we consider two patterns Λ1 and Λ2 of lengths k1 and k2 respectively and obtain the pgf of joint distribution of (Xn,Λ 1,Yn,Λ2 ) using method of conditional probability generating functions where Xn,Λ1(Yn,Λ2) denotes the number of occurrences of pattern Λ1(Λ2 ) of length k1 (k2) in the first (second) n components of bivariate trials. An algorithm is developed to evaluate the exact probability distributions of the vector random variables from their derived probability generating functions. Further some waiting time distributions are studied using the joint distribution of runs.
机构地区 不详
出处 《Open Journal of Statistics》 2011年第2期115-127,共13页 统计学期刊(英文)
关键词 MARKOV DEPENDENT BIVARIATE trials CONDITIONAL Probability GENERATING Function Joint Distribution Markov Dependent Bivariate trials Conditional Probability Generating Function Joint Distribution
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部