期刊文献+

Unbalanced Regressions and Spurious Inference

Unbalanced Regressions and Spurious Inference
下载PDF
导出
摘要 Spurious regression has been extensively studied in time series econometrics since Granger and Newbold’s seminal paper. Recently, it has been advanced that this phenomenon is due to a mistreatment of short-range autocorrelation in the residuals of the regression when at least one of the variables in a bivariate regression is stationary. HAC errors, feasible GLS and Cochrane-Orcutt-type procedures are then proposed to draw correct inference. Such a proposal should be cautiously considered, since nonsense inference might also be due to deterministic trend mechanisms, structural breaks, and long range dependence. In these cases, standard autocorrelation correction procedures would not solve the problem of spurious regression. We aim to make the later argument clear. Spurious regression has been extensively studied in time series econometrics since Granger and Newbold’s seminal paper. Recently, it has been advanced that this phenomenon is due to a mistreatment of short-range autocorrelation in the residuals of the regression when at least one of the variables in a bivariate regression is stationary. HAC errors, feasible GLS and Cochrane-Orcutt-type procedures are then proposed to draw correct inference. Such a proposal should be cautiously considered, since nonsense inference might also be due to deterministic trend mechanisms, structural breaks, and long range dependence. In these cases, standard autocorrelation correction procedures would not solve the problem of spurious regression. We aim to make the later argument clear.
出处 《Open Journal of Statistics》 2012年第3期297-299,共3页 统计学期刊(英文)
关键词 SPURIOUS Regression Stationarity Unbalanced Regression UNIT ROOT Spurious Regression Stationarity Unbalanced Regression Unit Root
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部