期刊文献+

Estimations of Weibull-Geometric Distribution under Progressive Type II Censoring Samples

Estimations of Weibull-Geometric Distribution under Progressive Type II Censoring Samples
下载PDF
导出
摘要 This paper deals with the Bayesian inferences of unknown parameters of the progressively Type II censored Weibull-geometric (WG) distribution. The Bayes estimators cannot be obtained in explicit forms of the unknown parameters under a squared error loss function. The approximate Bayes estimators will be computed using the idea of Markov Chain Monte Carlo (MCMC) method to generate from the posterior distributions. Also the point estimation and confidence intervals based on maximum likelihood and bootstrap technique are also proposed. The approximate Bayes estimators will be obtained under the assumptions of informative and non-informative priors are compared with the maximum likelihood estimators. A numerical example is provided to illustrate the proposed estimation methods here. Maximum likelihood, bootstrap and the different Bayes estimates are compared via a Monte Carlo Simulation This paper deals with the Bayesian inferences of unknown parameters of the progressively Type II censored Weibull-geometric (WG) distribution. The Bayes estimators cannot be obtained in explicit forms of the unknown parameters under a squared error loss function. The approximate Bayes estimators will be computed using the idea of Markov Chain Monte Carlo (MCMC) method to generate from the posterior distributions. Also the point estimation and confidence intervals based on maximum likelihood and bootstrap technique are also proposed. The approximate Bayes estimators will be obtained under the assumptions of informative and non-informative priors are compared with the maximum likelihood estimators. A numerical example is provided to illustrate the proposed estimation methods here. Maximum likelihood, bootstrap and the different Bayes estimates are compared via a Monte Carlo Simulation study
出处 《Open Journal of Statistics》 2015年第7期721-729,共9页 统计学期刊(英文)
关键词 Weibull-Geometric Distribution Progressive Type II CENSORING SAMPLES Bayesian ESTIMATION Maximum LIKELIHOOD ESTIMATION Bootstrap CONFIDENCE INTERVALS Markov Chain Monte Carlo Weibull-Geometric Distribution Progressive Type II Censoring Samples Bayesian Estimation Maximum Likelihood Estimation Bootstrap Confidence Intervals Markov Chain Monte Carlo
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部