摘要
Let two separate surveys collect related information on a single population U. Consider situation where we want to best combine data from the two surveys to yield a single set of estimates of a population quantity (population parameter) of interest. This Article presents a multiplicative bias reduction estimator for nonparametric regression to two sample problem in sample survey. The approach consists to apply a multiplicative bias correction to an estimator. The multiplicative bias correction method which was proposed, by Linton & Nielsen, 1994, assures a positive estimate and reduces the bias of the estimate with negligible increase in variance. Even as we apply this method to the two sample problem in sample survey, we found out through the study of it asymptotic properties that it was asymptotically unbiased, and statistically consistent. Furthermore an empirical study was carried out to compare the performance of the developed estimator with the existing ones.
Let two separate surveys collect related information on a single population U. Consider situation where we want to best combine data from the two surveys to yield a single set of estimates of a population quantity (population parameter) of interest. This Article presents a multiplicative bias reduction estimator for nonparametric regression to two sample problem in sample survey. The approach consists to apply a multiplicative bias correction to an estimator. The multiplicative bias correction method which was proposed, by Linton & Nielsen, 1994, assures a positive estimate and reduces the bias of the estimate with negligible increase in variance. Even as we apply this method to the two sample problem in sample survey, we found out through the study of it asymptotic properties that it was asymptotically unbiased, and statistically consistent. Furthermore an empirical study was carried out to compare the performance of the developed estimator with the existing ones.