摘要
GMM inference procedures based on the square of the modulus of the model characteristic function are developed using sample moments selected using estimating function theory and bypassing the use of empirical characteristic function of other GMM procedures in the literature. The procedures are relatively simple to implement and are less simulation-oriented than simulated methods of inferences yet have the potential of good efficiencies for models with densities without closed form. The procedures also yield better estimators than method of moment estimators for models with more than three parameters as higher order sample moments tend to be unstable.
GMM inference procedures based on the square of the modulus of the model characteristic function are developed using sample moments selected using estimating function theory and bypassing the use of empirical characteristic function of other GMM procedures in the literature. The procedures are relatively simple to implement and are less simulation-oriented than simulated methods of inferences yet have the potential of good efficiencies for models with densities without closed form. The procedures also yield better estimators than method of moment estimators for models with more than three parameters as higher order sample moments tend to be unstable.
作者
Andrew Luong
Andrew Luong(école d’actuariat, Université Laval, Ste Foy, Québec, Canada)