期刊文献+

A Geometric Approach to Conditioning and the Search for Minimum Variance Unbiased Estimators

A Geometric Approach to Conditioning and the Search for Minimum Variance Unbiased Estimators
下载PDF
导出
摘要 Our purpose is twofold: to present a prototypical example of the conditioning technique to obtain the best estimator of a parameter and to show that th</span><span style="font-family:Verdana;">is technique resides in the structure of an inner product space. Th</span><span style="font-family:Verdana;">e technique uses conditioning </span></span><span style="font-family:Verdana;">of</span><span style="font-family:Verdana;"> an unbiased estimator </span><span style="font-family:Verdana;">on</span><span style="font-family:Verdana;"> a sufficient statistic. This procedure is founded upon the conditional variance formula, which leads to an inner product space and a geometric interpretation. The example clearly illustrates the dependence on the sampling methodology. These advantages show the power and centrality of this process. Our purpose is twofold: to present a prototypical example of the conditioning technique to obtain the best estimator of a parameter and to show that th</span><span style="font-family:Verdana;">is technique resides in the structure of an inner product space. Th</span><span style="font-family:Verdana;">e technique uses conditioning </span></span><span style="font-family:Verdana;">of</span><span style="font-family:Verdana;"> an unbiased estimator </span><span style="font-family:Verdana;">on</span><span style="font-family:Verdana;"> a sufficient statistic. This procedure is founded upon the conditional variance formula, which leads to an inner product space and a geometric interpretation. The example clearly illustrates the dependence on the sampling methodology. These advantages show the power and centrality of this process.
作者 James E. Marengo David L. Farnsworth James E. Marengo;David L. Farnsworth(School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York, USA)
出处 《Open Journal of Statistics》 2021年第3期437-442,共6页 统计学期刊(英文)
关键词 Conditional Variance Formula CONDITIONING Geometric Representation Minimum Variance Estimator Rao-Blackwell Theorem Sufficient Statistic Unbiased Estimator Conditional Variance Formula Conditioning Geometric Representation Minimum Variance Estimator Rao-Blackwell Theorem Sufficient Statistic Unbiased Estimator
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部