摘要
A growing number of international studies have highlighted that ambient air pollution exposures are related to different health outcomes. To do so, researchers need to estimate exposure levels to air pollution throughout everyday life. In the literature, the most commonly used estimate is based on home address only or taking into account, in addition, the work address. However, several studies have shown the importance of daily mobility in the estimate of exposure to air pollutants. In this context, we developed an R procedure that estimates individual exposures combining home addresses, several important places, and itineraries of the principal mobility during a week. It supplies researchers a useful tool to calculate individual daily exposition to air pollutants weighting by the time spent at each of the most frequented locations (work, shopping, residential address, etc.) and while commuting. This task requires the efficient calculation of travel time matrices or the examination of multimodal transport routes. This procedure is freely available from the Equit’Area project website: (https://www.equitarea.org). This procedure is structured in three parts: the first part is to create a network, the second allows to estimate main itineraries of the daily mobility and the last one tries to reconstitute the level of air pollution exposure. One main advantage of the tool is that the procedure can be used with different spatial scales and for any air pollutant.
A growing number of international studies have highlighted that ambient air pollution exposures are related to different health outcomes. To do so, researchers need to estimate exposure levels to air pollution throughout everyday life. In the literature, the most commonly used estimate is based on home address only or taking into account, in addition, the work address. However, several studies have shown the importance of daily mobility in the estimate of exposure to air pollutants. In this context, we developed an R procedure that estimates individual exposures combining home addresses, several important places, and itineraries of the principal mobility during a week. It supplies researchers a useful tool to calculate individual daily exposition to air pollutants weighting by the time spent at each of the most frequented locations (work, shopping, residential address, etc.) and while commuting. This task requires the efficient calculation of travel time matrices or the examination of multimodal transport routes. This procedure is freely available from the Equit’Area project website: (https://www.equitarea.org). This procedure is structured in three parts: the first part is to create a network, the second allows to estimate main itineraries of the daily mobility and the last one tries to reconstitute the level of air pollution exposure. One main advantage of the tool is that the procedure can be used with different spatial scales and for any air pollutant.
作者
Valentin Simoncic
Mario Pozzar
Christophe Enaux
Severine Deguen
Wahida Kihal-Talantikite
Valentin Simoncic;Mario Pozzar;Christophe Enaux;Severine Deguen;Wahida Kihal-Talantikite(LIVE UMR 7362 CNRS (Laboratoire Image Ville Environnement), University of Strasbourg, Strasbourg, France;ENSAI School for Statistics and Data Science, Bruz, France;Sorbonne Universités, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique (UMRS 1136), Department of Social Epidemiology, Paris, France)