摘要
We observed atherosclerotic plaque phantoms using a novel near-infrared (NIR) hyperspectral imaging (HSI) technique. Data were obtained through saline or blood layers to simulate an angioscopic environment for the phantom. For the study, we developed a NIR-HSI system with an NIR supercontinuum light source and mercury-cadmium-telluride camera. Apparent spectral absorbance was obtained at wavelengths of 1150 - 2400 nm. Hyperspectral images of lipid were constructed using a spectral angle mapper algorithm. Bovine fat covered with saline or blood was observed using hyperspectral images at a wavelength around 1200 nm. Our results show that NIR-HSI is a promising angioscopic technique with the potential to identify lipid-rich plaques without clamping and saline injection.
We observed atherosclerotic plaque phantoms using a novel near-infrared (NIR) hyperspectral imaging (HSI) technique. Data were obtained through saline or blood layers to simulate an angioscopic environment for the phantom. For the study, we developed a NIR-HSI system with an NIR supercontinuum light source and mercury-cadmium-telluride camera. Apparent spectral absorbance was obtained at wavelengths of 1150 - 2400 nm. Hyperspectral images of lipid were constructed using a spectral angle mapper algorithm. Bovine fat covered with saline or blood was observed using hyperspectral images at a wavelength around 1200 nm. Our results show that NIR-HSI is a promising angioscopic technique with the potential to identify lipid-rich plaques without clamping and saline injection.