摘要
Ca1-xNixS (0 ≤ x ≤ 0.05) nanocrystals have been synthesized by facile solid state reaction method. Synthesized nanocrystals are further etched with mild acid solutions to reduce the particle size, which augments the surface to volume ratio and confinement of carriers. Crystallographic and morphological characterizations of synthesized nanomaterials have been done by X-ray diffraction and electron microscopy, respectively. Comparison of the diffraction and electron microscopy studies reveal the formation of single crystalline nanostructures. Optical characterization of synthesized nanomaterials has been done by UV-vis. absorption spectroscopic studies. The photo-catalytic activity of synthesized nanomaterials under UV irradiation has been tested using methylene blue (MB) dye as a test contaminant in aqueous media. Photo-catalytic behaviour dependence on dopant concentration and etching has been thoroughly studied to explore the potential of synthesized nanomaterials for next era optoelectronic industrial applications as well as polluted water purification.
Ca1-xNixS (0 ≤ x ≤ 0.05) nanocrystals have been synthesized by facile solid state reaction method. Synthesized nanocrystals are further etched with mild acid solutions to reduce the particle size, which augments the surface to volume ratio and confinement of carriers. Crystallographic and morphological characterizations of synthesized nanomaterials have been done by X-ray diffraction and electron microscopy, respectively. Comparison of the diffraction and electron microscopy studies reveal the formation of single crystalline nanostructures. Optical characterization of synthesized nanomaterials has been done by UV-vis. absorption spectroscopic studies. The photo-catalytic activity of synthesized nanomaterials under UV irradiation has been tested using methylene blue (MB) dye as a test contaminant in aqueous media. Photo-catalytic behaviour dependence on dopant concentration and etching has been thoroughly studied to explore the potential of synthesized nanomaterials for next era optoelectronic industrial applications as well as polluted water purification.