期刊文献+

Photo-Catalytic Activity of Ca<sub>1-x</sub>Ni<sub>x</sub>S Nanocrystals

Photo-Catalytic Activity of Ca<sub>1-x</sub>Ni<sub>x</sub>S Nanocrystals
下载PDF
导出
摘要 Ca1-xNixS (0 ≤ x ≤ 0.05) nanocrystals have been synthesized by facile solid state reaction method. Synthesized nanocrystals are further etched with mild acid solutions to reduce the particle size, which augments the surface to volume ratio and confinement of carriers. Crystallographic and morphological characterizations of synthesized nanomaterials have been done by X-ray diffraction and electron microscopy, respectively. Comparison of the diffraction and electron microscopy studies reveal the formation of single crystalline nanostructures. Optical characterization of synthesized nanomaterials has been done by UV-vis. absorption spectroscopic studies. The photo-catalytic activity of synthesized nanomaterials under UV irradiation has been tested using methylene blue (MB) dye as a test contaminant in aqueous media. Photo-catalytic behaviour dependence on dopant concentration and etching has been thoroughly studied to explore the potential of synthesized nanomaterials for next era optoelectronic industrial applications as well as polluted water purification. Ca1-xNixS (0 ≤ x ≤ 0.05) nanocrystals have been synthesized by facile solid state reaction method. Synthesized nanocrystals are further etched with mild acid solutions to reduce the particle size, which augments the surface to volume ratio and confinement of carriers. Crystallographic and morphological characterizations of synthesized nanomaterials have been done by X-ray diffraction and electron microscopy, respectively. Comparison of the diffraction and electron microscopy studies reveal the formation of single crystalline nanostructures. Optical characterization of synthesized nanomaterials has been done by UV-vis. absorption spectroscopic studies. The photo-catalytic activity of synthesized nanomaterials under UV irradiation has been tested using methylene blue (MB) dye as a test contaminant in aqueous media. Photo-catalytic behaviour dependence on dopant concentration and etching has been thoroughly studied to explore the potential of synthesized nanomaterials for next era optoelectronic industrial applications as well as polluted water purification.
机构地区 Department of Physics
出处 《Optics and Photonics Journal》 2015年第7期205-211,共7页 光学与光子学期刊(英文)
关键词 Ca1-xNixS NANOCRYSTALS CRYSTALLOGRAPHY MORPHOLOGY Photo-Catalytic Activity Ca1-xNixS Nanocrystals Crystallography Morphology Photo-Catalytic Activity
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部