期刊文献+

Effect of Temperature on Optical Properties of Vegetable Oils Using UV-Vis and Laser Fluorescence Spectroscopy

Effect of Temperature on Optical Properties of Vegetable Oils Using UV-Vis and Laser Fluorescence Spectroscopy
下载PDF
导出
摘要 UV-Vis absorption and fluorescence spectroscopy are used to test the quality and changes in the composition of extra virgin olive oil (EVOO) and canola oil (CO) with temperature. The increase of temperature caused a change in the molecular structures of both types of oils seen as a gradual decrease of intensity amplitudes of absorption and fluorescence signals. A significant alteration occurred at ≈200&#176C where almost the main spectra of pheophytin-a, b, carotenoids, lutein and vitamin E in EVOO and linoleic acid and oleic acid in CO disappeared. An independent experiment showed the output of laser changes linearly with the input in oil at constant temperature (i.e., room temperature) where the transmission values of ≈33% and ≈75% are determined for EVOO and CO respectively. However, the transmission through a heated oil exhibited a non-linear behaviour which indicates the molecular optical response to thermal changes. The effect of storage time and adulteration of oils were also evaluated. UV-Vis absorption and fluorescence spectroscopy are used to test the quality and changes in the composition of extra virgin olive oil (EVOO) and canola oil (CO) with temperature. The increase of temperature caused a change in the molecular structures of both types of oils seen as a gradual decrease of intensity amplitudes of absorption and fluorescence signals. A significant alteration occurred at ≈200&#176C where almost the main spectra of pheophytin-a, b, carotenoids, lutein and vitamin E in EVOO and linoleic acid and oleic acid in CO disappeared. An independent experiment showed the output of laser changes linearly with the input in oil at constant temperature (i.e., room temperature) where the transmission values of ≈33% and ≈75% are determined for EVOO and CO respectively. However, the transmission through a heated oil exhibited a non-linear behaviour which indicates the molecular optical response to thermal changes. The effect of storage time and adulteration of oils were also evaluated.
出处 《Optics and Photonics Journal》 2018年第7期247-263,共17页 光学与光子学期刊(英文)
关键词 EXTRA VIRGIN Oil CANOLA Temperature OPTICAL Properties UV-VIS Absorption FLUORESCENCE Spectroscopy Laser Extra Virgin Oil Canola Temperature Optical Properties UV-Vis Absorption Fluorescence Spectroscopy Laser
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部