期刊文献+

Demonstration of Orbital-Angular-Momentum-Based Optical Switching Using Dual-Area Mirrors

Demonstration of Orbital-Angular-Momentum-Based Optical Switching Using Dual-Area Mirrors
下载PDF
导出
摘要 We have designed an optical separation device called dual-area mirror for the data link of orbital angular momentum (OAM) multiplexing. Experiments show that the OAM multiplexed beams can be switched by using dual-area mirrors, using OOK to modulate four channels separately to form two inputs, channel A and channel B. There are two OAM beams that are multiplexed in each of channel A and channel B, using a spatial light modulator (SLM) to convert the OAM multiplexed beams in each channel. One of the beams is converted into a Gaussian beam, and then separated by a dual-area mirror, so as to realize the switch of a beam carrying different data in the two channels. Then these channels are detected. The waveform indicates that the switch is successful, and the measured optical power indicates that the dual-area mirror can reduce the bit error rate in the communication links. In addition, the device reduces the experimental cost, is easy to implement, is easy to integrate, and increases the angle between the separated beams. We have designed an optical separation device called dual-area mirror for the data link of orbital angular momentum (OAM) multiplexing. Experiments show that the OAM multiplexed beams can be switched by using dual-area mirrors, using OOK to modulate four channels separately to form two inputs, channel A and channel B. There are two OAM beams that are multiplexed in each of channel A and channel B, using a spatial light modulator (SLM) to convert the OAM multiplexed beams in each channel. One of the beams is converted into a Gaussian beam, and then separated by a dual-area mirror, so as to realize the switch of a beam carrying different data in the two channels. Then these channels are detected. The waveform indicates that the switch is successful, and the measured optical power indicates that the dual-area mirror can reduce the bit error rate in the communication links. In addition, the device reduces the experimental cost, is easy to implement, is easy to integrate, and increases the angle between the separated beams.
作者 Shengtao Chen Xizheng Ke Shengtao Chen;Xizheng Ke(Xi’an University of Technology, School of Automation and Information Engineering, Xi’an, China;Shaanxi Civil-Military Integration Key Laboratory of Intelligence Collaborative Networks, Xi’an, China)
出处 《Optics and Photonics Journal》 2021年第8期351-359,共9页 光学与光子学期刊(英文)
关键词 Optical Communication Dual-Area Mirror SWITCHING Optical Network Optical Communication Dual-Area Mirror Switching Optical Network
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部