期刊文献+

The Comparison of Substrate Stability in Neuraminidase Type 2 (N2) Active Site between A/Tokyo/3/67 and A/Pennsylvania/10218/84 with Heating Dynamics Simulation

The Comparison of Substrate Stability in Neuraminidase Type 2 (N2) Active Site between A/Tokyo/3/67 and A/Pennsylvania/10218/84 with Heating Dynamics Simulation
下载PDF
导出
摘要 A molecular dynamics simulation of two neuraminidase-sialic acid (NA-SA) complexes show a difference of the level of stability between sialic acid and neuraminidases that originated from viruses A/Tokyo/3/67 (Structure A) dan A/Pennsylvania/10218/84 (Structure B). Analyses of sialic acid RMSD and the change of torsional angles suggest that the sialic acid in Structure A is much more twisted and able to be influenced more by the binding of the neuraminidase functional residues than Structure B. Moreover, analyses upon hydrogen bond occupancy and binding free energy of both complexes showed that Structure A had more stable hydrogen bonds and each complex’s binding free energy were calculated to be –1.37 kcal/mol and 17.97 kcal/mol for Structure A and Structure B, respectively, further suggesting stability more dominant in Structure A than Structure B. Overall, Structure A has a more stable enzyme-substrate than Structure B. A molecular dynamics simulation of two neuraminidase-sialic acid (NA-SA) complexes show a difference of the level of stability between sialic acid and neuraminidases that originated from viruses A/Tokyo/3/67 (Structure A) dan A/Pennsylvania/10218/84 (Structure B). Analyses of sialic acid RMSD and the change of torsional angles suggest that the sialic acid in Structure A is much more twisted and able to be influenced more by the binding of the neuraminidase functional residues than Structure B. Moreover, analyses upon hydrogen bond occupancy and binding free energy of both complexes showed that Structure A had more stable hydrogen bonds and each complex’s binding free energy were calculated to be –1.37 kcal/mol and 17.97 kcal/mol for Structure A and Structure B, respectively, further suggesting stability more dominant in Structure A than Structure B. Overall, Structure A has a more stable enzyme-substrate than Structure B.
机构地区 Departement of Physics
出处 《World Journal of Condensed Matter Physics》 2011年第3期77-87,共11页 凝固态物理国际期刊(英文)
关键词 NEURAMINIDASE Sialic Acid BIND Stability Functional Residues AVIAN INFLUENZA Neuraminidase Sialic Acid Bind Stability Functional Residues Avian Influenza
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部