摘要
We investigate theoretically the high frequency complex conductivity in carbon nanotubes that are stimulated axially by a strong inhomogeneous electric field of the form E(t)=E0+E1cos(ωt). Using the kinetic approach based on Boltzmann’s transport equation with constant relaxation time approximation and the energy spectrum of the electron in the tight-binding approximation, together with Bhatnagar-Gross-Krook collision integral, we predict high-frequency nonlinear effects along the axial and the circumferential directions of the carbon nanotubes that may be useful for the generation of high frequency radiation in the carbon nanotubes.
We investigate theoretically the high frequency complex conductivity in carbon nanotubes that are stimulated axially by a strong inhomogeneous electric field of the form E(t)=E0+E1cos(ωt). Using the kinetic approach based on Boltzmann’s transport equation with constant relaxation time approximation and the energy spectrum of the electron in the tight-binding approximation, together with Bhatnagar-Gross-Krook collision integral, we predict high-frequency nonlinear effects along the axial and the circumferential directions of the carbon nanotubes that may be useful for the generation of high frequency radiation in the carbon nanotubes.