摘要
Planar tetrapods ZnO (PTP-ZnO) or cross shaped tetrapod nanostructures were synthesized by a cethyltrimethylamonium hydroxide (CTAOH)-assisted hydrothermal method at low temperature (120°C). The XRD diffractogram showed that the PTP-ZnO nanostructures showed a hexagonal wurtzite phase. The studies with high resolution transmission electron microscopy (HRTEM) and select area specific diffraction (SAED) revealed that the ZnO pods were single crystals and preferentially grew up along [002] direction. The growth mechanism of the CTAOH assisted-hydrothermal synthesized PTP-ZnO nanostructures is explained using the final shape guiding of materials nanostructured and surfactant-action theories.
Planar tetrapods ZnO (PTP-ZnO) or cross shaped tetrapod nanostructures were synthesized by a cethyltrimethylamonium hydroxide (CTAOH)-assisted hydrothermal method at low temperature (120°C). The XRD diffractogram showed that the PTP-ZnO nanostructures showed a hexagonal wurtzite phase. The studies with high resolution transmission electron microscopy (HRTEM) and select area specific diffraction (SAED) revealed that the ZnO pods were single crystals and preferentially grew up along [002] direction. The growth mechanism of the CTAOH assisted-hydrothermal synthesized PTP-ZnO nanostructures is explained using the final shape guiding of materials nanostructured and surfactant-action theories.