期刊文献+

Dynamical Examinations of Vibrator Models, Describing Some Non Elastic Properties of Crystals

Dynamical Examinations of Vibrator Models, Describing Some Non Elastic Properties of Crystals
下载PDF
导出
摘要 On the base of a vibrator atomic model the mechanical and thermal properties of the object are analyzed. The potential energy of the vibrator is represented by means of positive term with coordinate deflection in second power and negative term with deflection in fourth power. With the use of dynamical procedure of calculation, which permits to calculate mean deflection and root mean square amplitude of vibrations, the dependence of applied force from mean amplitude and temperature is calculated. This dependence shows a maximum (or minimum, when the direction of force is reversed), the height of which diminishes with rising temperature. When the force reaches the value of the maximum, the object does not elastic counteract to the force, and gliding begins. It is also considered a vibrator with positive term, containing the deflection in second power and a term, where the deflection treats in third power (Boguslawski vibrator). Exact calculations of the dependence of the force from the temperature in adiabatic process, where the entropy is maintained constant, shows that it is represented by means of a curve with a maximum, so that stretching leads to cooling till the point of maximum is reached. On the base of a vibrator atomic model the mechanical and thermal properties of the object are analyzed. The potential energy of the vibrator is represented by means of positive term with coordinate deflection in second power and negative term with deflection in fourth power. With the use of dynamical procedure of calculation, which permits to calculate mean deflection and root mean square amplitude of vibrations, the dependence of applied force from mean amplitude and temperature is calculated. This dependence shows a maximum (or minimum, when the direction of force is reversed), the height of which diminishes with rising temperature. When the force reaches the value of the maximum, the object does not elastic counteract to the force, and gliding begins. It is also considered a vibrator with positive term, containing the deflection in second power and a term, where the deflection treats in third power (Boguslawski vibrator). Exact calculations of the dependence of the force from the temperature in adiabatic process, where the entropy is maintained constant, shows that it is represented by means of a curve with a maximum, so that stretching leads to cooling till the point of maximum is reached.
机构地区 Scientific Society
出处 《World Journal of Condensed Matter Physics》 2017年第3期80-88,共9页 凝固态物理国际期刊(英文)
关键词 ANHARMONIC VIBRATOR GLIDING DESTRUCTION ADIABATIC Curve Anharmonic Vibrator Gliding Destruction Adiabatic Curve
  • 相关文献

参考文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部