期刊文献+

Combined Effects of Hall Current and Rotation on Unsteady Couette Flow in a Porous Channel

Combined Effects of Hall Current and Rotation on Unsteady Couette Flow in a Porous Channel
下载PDF
导出
摘要 The combined influences of Hall currents and rotation on the MHD Couette flow of a viscous incompressible electrically conducting fluid between two infinite horizontal parallel porous plates channel in a rotating system in the presence of a uniform transverse magnetic field have been carried out. The solutions for the velocity field as well as shear stresses have been obtained for small time as well as for large times by Laplace transform technique. It is found that for large times the Hall currents accelerates primary flow whereas it retards secondary flow while the rotation retards the primary flow whereas it accelerates the secondary flow. It is also found that the velocity components converge more rapidly for small time solution than the general solution. The asymptotic behavior of the solution is analyzed for small as well as large values of magnetic parameter M2, rotation parameter K2 and Reynolds number Re. It is observed that a thin boundary layer is formed near the moving plate of the channel and the thicknesses of the layer increases with increase in either Hall parameter m or Reynolds number Re while it decreases with increase in Hartmann number M. It is interesting to note that for large values of M2 , the boundary layer thickness is independent of the rotation parameter. The combined influences of Hall currents and rotation on the MHD Couette flow of a viscous incompressible electrically conducting fluid between two infinite horizontal parallel porous plates channel in a rotating system in the presence of a uniform transverse magnetic field have been carried out. The solutions for the velocity field as well as shear stresses have been obtained for small time as well as for large times by Laplace transform technique. It is found that for large times the Hall currents accelerates primary flow whereas it retards secondary flow while the rotation retards the primary flow whereas it accelerates the secondary flow. It is also found that the velocity components converge more rapidly for small time solution than the general solution. The asymptotic behavior of the solution is analyzed for small as well as large values of magnetic parameter M2, rotation parameter K2 and Reynolds number Re. It is observed that a thin boundary layer is formed near the moving plate of the channel and the thicknesses of the layer increases with increase in either Hall parameter m or Reynolds number Re while it decreases with increase in Hartmann number M. It is interesting to note that for large values of M2 , the boundary layer thickness is independent of the rotation parameter.
机构地区 不详
出处 《World Journal of Mechanics》 2011年第3期87-99,共13页 力学国际期刊(英文)
关键词 MHD COUETTE Flow HALL Current Hartmann NUMBER ROTATION Parameter REYNOLDS NUMBER And Boundary Layer MHD Couette Flow Hall Current Hartmann Number Rotation Parameter Reynolds Number And Boundary Layer
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部