期刊文献+

Any Hamiltonian System Is Locally Equivalent to a Free Particle

Any Hamiltonian System Is Locally Equivalent to a Free Particle
下载PDF
导出
摘要 In this work we use the Hamilton-Jacobi theory to show that locally all the Hamiltonian systems with n degrees of freedom are equivalent. That is, there is a canonical transformation connecting two arbitrary Hamiltonian systems with the same number of degrees of freedom. This result in particular implies that locally all the Hamiltonian systems are equivalent to that of a free particle. We illustrate our result with two particular examples;first we show that the one-dimensional free particle is locally equivalent to the one-dimensional harmonic oscillator and second that the two-dimensional free particle is locally equivalent to the two-dimensional Kepler problem. In this work we use the Hamilton-Jacobi theory to show that locally all the Hamiltonian systems with n degrees of freedom are equivalent. That is, there is a canonical transformation connecting two arbitrary Hamiltonian systems with the same number of degrees of freedom. This result in particular implies that locally all the Hamiltonian systems are equivalent to that of a free particle. We illustrate our result with two particular examples;first we show that the one-dimensional free particle is locally equivalent to the one-dimensional harmonic oscillator and second that the two-dimensional free particle is locally equivalent to the two-dimensional Kepler problem.
出处 《World Journal of Mechanics》 2012年第5期246-252,共7页 力学国际期刊(英文)
关键词 HAMILTONIAN System CANONICAL Transformation Hamiltonian System Canonical Transformation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部