期刊文献+

Dynamic Transverse Deflection of a Free Mild-Steel Plate

Dynamic Transverse Deflection of a Free Mild-Steel Plate
下载PDF
导出
摘要 The problem analytically investigated is that a thin free plate of mild-steel struck at normal incidence by a flat ended rigid rod moving at high velocity. As in quasi-static deformation by extended slip, the strain-rate tensor is solenoidal and under dynamic loading conditions the Tresca yield criterion is modified so that the solenoidal property replaces the hypothesis of a viscoplastic overstress. Overstress then arises from inertial body forces and the high magnitudes found, in the following,?for these forces are due to the influence of the propagating boundary. Two new theorems are proven. These theorems show that the deflection in the plate is entirely transverse, even in the case of indefinitely large punch deflections, and that the lines of equal transverse deflection in the plate are also principal lines of stress and strain-rate, as are the lines of steepest descent. A formula is obtained giving the inertial force opposing the punch as a function of the time and the theoretical deflection profile on a plate deformed by a flat-ended punch of circular section is presented. The stresses in the plate are then analyzed and it is shown that the stress inside the boundary in the direction of propagation, equals ρc2where ρ is the mass density of the plate material and the boundary wave propagates at speed c which, it is shown, is equal to one-half of the velocity of elastic waves of rotation in the solid concerned. The problem analytically investigated is that a thin free plate of mild-steel struck at normal incidence by a flat ended rigid rod moving at high velocity. As in quasi-static deformation by extended slip, the strain-rate tensor is solenoidal and under dynamic loading conditions the Tresca yield criterion is modified so that the solenoidal property replaces the hypothesis of a viscoplastic overstress. Overstress then arises from inertial body forces and the high magnitudes found, in the following,?for these forces are due to the influence of the propagating boundary. Two new theorems are proven. These theorems show that the deflection in the plate is entirely transverse, even in the case of indefinitely large punch deflections, and that the lines of equal transverse deflection in the plate are also principal lines of stress and strain-rate, as are the lines of steepest descent. A formula is obtained giving the inertial force opposing the punch as a function of the time and the theoretical deflection profile on a plate deformed by a flat-ended punch of circular section is presented. The stresses in the plate are then analyzed and it is shown that the stress inside the boundary in the direction of propagation, equals ρc2where ρ is the mass density of the plate material and the boundary wave propagates at speed c which, it is shown, is equal to one-half of the velocity of elastic waves of rotation in the solid concerned.
机构地区 Metallurgy Division
出处 《World Journal of Mechanics》 2013年第9期339-349,共11页 力学国际期刊(英文)
关键词 Plasticity DYNAMIC PUNCHING HUYGENS Principle Shear ELASTIC Waves ELASTIC Rotational Wave Velocity Lüders BANDS Plasticity Dynamic Punching Huygens Principle Shear Elastic Waves Elastic Rotational Wave Velocity Lüders Bands
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部