期刊文献+

Efficient Simulation of Nonlinear Heat Transfer during Thermal Spraying of Complex Workpieces

Efficient Simulation of Nonlinear Heat Transfer during Thermal Spraying of Complex Workpieces
下载PDF
导出
摘要 The quality of coatings, produced by thermal spraying processes, considerably decreases with the occurrence of higher residual stresses, which are especially pronounced for complex workpiece geometries. To understand the occurring effects and to aid in the planning of coating processes, simulations of the highly transient energy flux of the HVOF spray gun into the substrate are of great value. In this article, a software framework for the simulation of nonlinear heat transfer during (HVOF) thermal spraying is presented. One part of this framework employs an efficient GPU-based simulation algorithm to compute the time-dependent input boundary conditions for a spray gun that moves along a complex workpiece of arbitrary shape. The other part employs a finite-element model for a rigid heat conductor adhering to the computed boundary conditions. The model is derived from the fundamental equations of continuum thermodynamics where nonlinear temperature-depending heat conduction is assumed. The quality of coatings, produced by thermal spraying processes, considerably decreases with the occurrence of higher residual stresses, which are especially pronounced for complex workpiece geometries. To understand the occurring effects and to aid in the planning of coating processes, simulations of the highly transient energy flux of the HVOF spray gun into the substrate are of great value. In this article, a software framework for the simulation of nonlinear heat transfer during (HVOF) thermal spraying is presented. One part of this framework employs an efficient GPU-based simulation algorithm to compute the time-dependent input boundary conditions for a spray gun that moves along a complex workpiece of arbitrary shape. The other part employs a finite-element model for a rigid heat conductor adhering to the computed boundary conditions. The model is derived from the fundamental equations of continuum thermodynamics where nonlinear temperature-depending heat conduction is assumed.<
出处 《World Journal of Mechanics》 2014年第9期289-301,共13页 力学国际期刊(英文)
关键词 NONLINEAR HEAT Conduction CONTINUUM THERMODYNAMICS GPU COMPUTING Nonlinear Heat Conduction Continuum Thermodynamics GPU Computing
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部