摘要
The mechanical behavior of steel employed in the hull of a steel tank damaged by corrosion has been analyzed. The tank was used to filter a deep-water well for an 8-year period. Influence of porosity and dissolution of material may be introduced in the main constitutive relation adding a new damage variable C, which describes electrochemical damage. An elastoplastic theoretical model coupled to damage of a member, and other for damage related to thermodynamic energy are developed. This theoretical development has been used to analyze mechanical behavior of steel used in the body of a steel tank damaged by corrosion in water purifier plants, Eastern System, Mexico City, where three of every ten filters show excessive corrosion inside the steel plate filtration tanks. With samples taken from steel of the tank’s hull and reinforcement of false bottom supporting filtering material inside the tank, metallography tests were carried out;localized and generalized types of corrosion were determined, as well as the type of corrosion composites generated due to anticorrosive coating used inside the tank from its manufacturing.
The mechanical behavior of steel employed in the hull of a steel tank damaged by corrosion has been analyzed. The tank was used to filter a deep-water well for an 8-year period. Influence of porosity and dissolution of material may be introduced in the main constitutive relation adding a new damage variable C, which describes electrochemical damage. An elastoplastic theoretical model coupled to damage of a member, and other for damage related to thermodynamic energy are developed. This theoretical development has been used to analyze mechanical behavior of steel used in the body of a steel tank damaged by corrosion in water purifier plants, Eastern System, Mexico City, where three of every ten filters show excessive corrosion inside the steel plate filtration tanks. With samples taken from steel of the tank’s hull and reinforcement of false bottom supporting filtering material inside the tank, metallography tests were carried out;localized and generalized types of corrosion were determined, as well as the type of corrosion composites generated due to anticorrosive coating used inside the tank from its manufacturing.