期刊文献+

From Nikolay Umov E=kmc^(2) via Albert Einstein’s E=γmc^(2) to the Dark Energy Density of the Cosmos E=(21 22)mc^(2)

下载PDF
导出
摘要 The paper starts from the remarkable classical equation of the great nineteenth century Russian physicist Nikolay Umov E=kmc2 where 1/2≤k≤1, m is the mass, c is the speed of light and E is the equivalent energy of m. After a short but deep discussion of the derivation of Umov we move to Einstein’s formula E=γmc2?where γis the Lorentz factor of special relativity and point out the interesting difference and similarity between Umov’s k and Lorentz-Einstein γ. This is particularly considered in depth for the special case which leads to the famous equation?E=mc2?that is interpreted here to be the maximal cosmic energy density possible. Subsequently we discuss the dissection of E=mc2 into two components, namely the cosmic dark energy density E(D)=(21/22)MC2 and the ordinary energy density E(O)=MC2/22? where?E(D)+E(O)=MC2. Finally we move from this to the three-part dissection where we show that E is simply the sum of pure dark energy E(PD) plus dark matter energy E(DM) as well as ordinary energy E(O). The paper starts from the remarkable classical equation of the great nineteenth century Russian physicist Nikolay Umov E=kmc2 where 1/2≤k≤1, m is the mass, c is the speed of light and E is the equivalent energy of m. After a short but deep discussion of the derivation of Umov we move to Einstein’s formula E=γmc2?where γis the Lorentz factor of special relativity and point out the interesting difference and similarity between Umov’s k and Lorentz-Einstein γ. This is particularly considered in depth for the special case which leads to the famous equation?E=mc2?that is interpreted here to be the maximal cosmic energy density possible. Subsequently we discuss the dissection of E=mc2 into two components, namely the cosmic dark energy density E(D)=(21/22)MC2 and the ordinary energy density E(O)=MC2/22? where?E(D)+E(O)=MC2. Finally we move from this to the three-part dissection where we show that E is simply the sum of pure dark energy E(PD) plus dark matter energy E(DM) as well as ordinary energy E(O).
机构地区 Department of Physics
出处 《World Journal of Mechanics》 2018年第4期73-81,共9页 力学国际期刊(英文)
  • 相关文献

二级参考文献5

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部