摘要
The formation conditions and time sequences for various types of wrench-related fractures are not clear. Based on a parabola-type failure criterion, this paper has gotten new insights on those questions. In a simple shear, the occurrence of either tensional fractures or Riedel shears is controlled by the ratio (Rtc) of tensile strength to cohesion. In a pure shear, the occurrence of either second order tensional fractures or second order Riedel shears is controlled by the ratio (Rtci) of tensile strength to cohesion, given a constant inner frictional coefficient. Where the Rtc or the Rtci is less than a certain value, the en echelon tensional fractures will occur first. Where the Rtc or the Rtci is bigger than the certain value, the Riedel shears will occur first. Where the Rtc or the Rtci is equal to the certain value, the en echelon tensional fractures and the Riedel shears will occur simultaneously. The understandings will enhance the research on wrench related fractures and will be of significance in petroleum exploration and development, because fractures are both important accumulation spaces and key migration paths for oil and gas.
The formation conditions and time sequences for various types of wrench-related fractures are not clear. Based on a parabola-type failure criterion, this paper has gotten new insights on those questions. In a simple shear, the occurrence of either tensional fractures or Riedel shears is controlled by the ratio (Rtc) of tensile strength to cohesion. In a pure shear, the occurrence of either second order tensional fractures or second order Riedel shears is controlled by the ratio (Rtci) of tensile strength to cohesion, given a constant inner frictional coefficient. Where the Rtc or the Rtci is less than a certain value, the en echelon tensional fractures will occur first. Where the Rtc or the Rtci is bigger than the certain value, the Riedel shears will occur first. Where the Rtc or the Rtci is equal to the certain value, the en echelon tensional fractures and the Riedel shears will occur simultaneously. The understandings will enhance the research on wrench related fractures and will be of significance in petroleum exploration and development, because fractures are both important accumulation spaces and key migration paths for oil and gas.