摘要
Prior to the installation of the Cd-liner in one of the large outer irradiation channels of NIRR-1, a Monte Carlo simulation was performed using MCNP5 version 1.4 code. This was done to investigate the effect of installation of Cd-liner in either an inner or outer irradiation channel on reactor physics parameters. Data obtained indicate that the core excess reactivity in both inner and outer irradiations channels is reduced by 3.60 ± 0.07 mk and 0.64 ± 0.06 mk, respectively. Considering the fact that NIRR-1 has a cold core excess reactivity of 3.77 mk, results obtained show that installation of the 1 mm thick Cd-sheet in one of the large outer irradiation channels would have no significant impact on the core physics data. After installation of a 1 mm Cd sheath in a large outer irradiation channel, the neutron flux distribution and the stability in the irradiation channels were monitored by foil activation method. Results indicate that the uniformity of neutron flux distribution in the irradiation channel is preserved and the neutron flux data were found to be comparable with the data obtained before the installation.
Prior to the installation of the Cd-liner in one of the large outer irradiation channels of NIRR-1, a Monte Carlo simulation was performed using MCNP5 version 1.4 code. This was done to investigate the effect of installation of Cd-liner in either an inner or outer irradiation channel on reactor physics parameters. Data obtained indicate that the core excess reactivity in both inner and outer irradiations channels is reduced by 3.60 ± 0.07 mk and 0.64 ± 0.06 mk, respectively. Considering the fact that NIRR-1 has a cold core excess reactivity of 3.77 mk, results obtained show that installation of the 1 mm thick Cd-sheet in one of the large outer irradiation channels would have no significant impact on the core physics data. After installation of a 1 mm Cd sheath in a large outer irradiation channel, the neutron flux distribution and the stability in the irradiation channels were monitored by foil activation method. Results indicate that the uniformity of neutron flux distribution in the irradiation channel is preserved and the neutron flux data were found to be comparable with the data obtained before the installation.