期刊文献+

Efforts to Improve the Images from <sup>67</sup>Ga Whole-Body Scintigraphy

Efforts to Improve the Images from <sup>67</sup>Ga Whole-Body Scintigraphy
下载PDF
导出
摘要 The acquisition method for planar 67Ga imaging has hardly changed for 30 years. In this study, in order to improve image quality and diagnostic accuracy, we take steps to optimize the acquisition method, and to choose a scatter correction. First, we acquired individual images from the 93 keV, 185 keV, and 300 keV photopeak;then the images were added together and compared to the individual images. Second, we compared results from a low-medium-energy (LME) collimator with those from a conventional medium-energy (ME) collimator. Also, we examined whether to combine the data from all three of the usual window locations (set about 93 keV, 185 keV, and 300 keV) or to use the data from only two. Third, we compared results from a conventional photopeak ± 10% window with those from a photopeak ± 9 keV window. Fourth, for scatter correction we compared results using the triple energy window (TEW) method with those using the multi-photopeak dual window (MDW) method. The phantoms studied were cold rods in a uniform background, and hot spheres within a cylinder containing uniformly radioactive water. The clinical study involved 22 patients with lung lesions. By the comparison by the contrast ratio in cold rods phantom, 15.6% is improved in LME (2 peaks) than ME (3 peaks), and 3.2% is improved in photopeak ± 9 keV than photopeak ± 10%, 10.2% is improved in TEW than MDW. However, the TEW scatter correction method recognized unstable to the contrast ratio in a clinical study. In addition, a body outline might disappear. The acquisition method for planar 67Ga imaging has hardly changed for 30 years. In this study, in order to improve image quality and diagnostic accuracy, we take steps to optimize the acquisition method, and to choose a scatter correction. First, we acquired individual images from the 93 keV, 185 keV, and 300 keV photopeak;then the images were added together and compared to the individual images. Second, we compared results from a low-medium-energy (LME) collimator with those from a conventional medium-energy (ME) collimator. Also, we examined whether to combine the data from all three of the usual window locations (set about 93 keV, 185 keV, and 300 keV) or to use the data from only two. Third, we compared results from a conventional photopeak ± 10% window with those from a photopeak ± 9 keV window. Fourth, for scatter correction we compared results using the triple energy window (TEW) method with those using the multi-photopeak dual window (MDW) method. The phantoms studied were cold rods in a uniform background, and hot spheres within a cylinder containing uniformly radioactive water. The clinical study involved 22 patients with lung lesions. By the comparison by the contrast ratio in cold rods phantom, 15.6% is improved in LME (2 peaks) than ME (3 peaks), and 3.2% is improved in photopeak ± 9 keV than photopeak ± 10%, 10.2% is improved in TEW than MDW. However, the TEW scatter correction method recognized unstable to the contrast ratio in a clinical study. In addition, a body outline might disappear.
出处 《World Journal of Nuclear Science and Technology》 2015年第1期1-5,共5页 核科学与技术国际期刊(英文)
关键词 67Ga Imaging LME COLLIMATOR MDW Scatter Correction 67Ga Imaging LME Collimator MDW Scatter Correction
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部