期刊文献+

Qualification of the ANET Code for Spallation Neutron Yield and Core Criticality in the KUCA ADS 被引量:1

Qualification of the ANET Code for Spallation Neutron Yield and Core Criticality in the KUCA ADS
下载PDF
导出
摘要 Innovative nuclear reactor concepts such as the Accelerator Driven Systems (ADSs) have imposed extra requirements of simulation capabilities on the existing stochastic neutronics codes. The combination of an accelerator and a nuclear reactor in the ADS requires the simulation of both subsystems for an integrated system analysis. Therefore, a need arises for more advanced simulation tools, able to cover the broad neutron energy spectrum involved in these systems. ANET (Advanced Neutronics with Evolution and Thermal hydraulic feedback) is an under development stochastic code for simulating conventional and hybrid nuclear reactors. Successive testing applications performed throughout the ANET development have been utilized to verify and validate the new code capabilities. In this context, the ANET reliability in simulating the spallation reaction and the corresponding neutron yield as well as computing the multiplication factor of an operating ADS are here examined. More specifically, three cores of the Kyoto University Critical Assembly (KUCA) facility in Japan were analyzed focusing on the spallation neutron yield and the neutron multiplication factor. The ANET-produced results are compared with independent results obtained using the stochastic codes MCNP6.1 and MCNPX. Satisfactory agreement is found between the codes, confirming thus ANET’s capability to successfully estimate both the neutron yield of the spallation reaction and the keff of a realistic ADS. Innovative nuclear reactor concepts such as the Accelerator Driven Systems (ADSs) have imposed extra requirements of simulation capabilities on the existing stochastic neutronics codes. The combination of an accelerator and a nuclear reactor in the ADS requires the simulation of both subsystems for an integrated system analysis. Therefore, a need arises for more advanced simulation tools, able to cover the broad neutron energy spectrum involved in these systems. ANET (Advanced Neutronics with Evolution and Thermal hydraulic feedback) is an under development stochastic code for simulating conventional and hybrid nuclear reactors. Successive testing applications performed throughout the ANET development have been utilized to verify and validate the new code capabilities. In this context, the ANET reliability in simulating the spallation reaction and the corresponding neutron yield as well as computing the multiplication factor of an operating ADS are here examined. More specifically, three cores of the Kyoto University Critical Assembly (KUCA) facility in Japan were analyzed focusing on the spallation neutron yield and the neutron multiplication factor. The ANET-produced results are compared with independent results obtained using the stochastic codes MCNP6.1 and MCNPX. Satisfactory agreement is found between the codes, confirming thus ANET’s capability to successfully estimate both the neutron yield of the spallation reaction and the keff of a realistic ADS.
出处 《World Journal of Nuclear Science and Technology》 2019年第4期174-181,共8页 核科学与技术国际期刊(英文)
关键词 Monte Carlo NEUTRONICS Analysis Code Validation ACCELERATOR Driven Systems Monte Carlo Neutronics Analysis Code Validation Accelerator Driven Systems
  • 相关文献

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部