期刊文献+

Cause Analysis for Wall Thinning of Small-Bore Piping in Nuclear Power Plant by ToSPACE, FLUENT and Theoretical Evaluation

Cause Analysis for Wall Thinning of Small-Bore Piping in Nuclear Power Plant by ToSPACE, FLUENT and Theoretical Evaluation
下载PDF
导出
摘要 It has been known that FAC, LDIE, cavitation and flashing are the damage mechanisms that can cause the pipe thickness of the secondary system of nuclear power plants thinner. Severe wall thinning was found in the MSR drain pipes at a Korean nuclear power plant a decade ago, and all the affected pipes were replaced with low alloy steel with higher chromium contents. Therefore, this study was conducted to reduce the possibility of similar thinning cases that may occur in the future by identifying the exact cause of thinning. ToSPACE and FLUENT codes and theoretical evaluation method were applied to analyze the causes of thinning. ToSPACE and FLUENT analyses and theoretical evaluation including all the operating conditions show a relatively large pressure drop and a pressure lower than the saturated vapor pressure in common at the end of the pipe entering the condenser. This means that flashing occurs at the end of the pipe under all operating conditions, and the effect can be greater than that of other parts. As a result, since severe wall thinning occurred at the end of the pipeline entering the condenser, it was evaluated that flashing by the high-velocity two-phase fluid was the direct cause of the wall thinning in the MSR drain pipes. The results of this study will contribute to establishing appropriate countermeasures in the event of pipe wall thinning in the future. It has been known that FAC, LDIE, cavitation and flashing are the damage mechanisms that can cause the pipe thickness of the secondary system of nuclear power plants thinner. Severe wall thinning was found in the MSR drain pipes at a Korean nuclear power plant a decade ago, and all the affected pipes were replaced with low alloy steel with higher chromium contents. Therefore, this study was conducted to reduce the possibility of similar thinning cases that may occur in the future by identifying the exact cause of thinning. ToSPACE and FLUENT codes and theoretical evaluation method were applied to analyze the causes of thinning. ToSPACE and FLUENT analyses and theoretical evaluation including all the operating conditions show a relatively large pressure drop and a pressure lower than the saturated vapor pressure in common at the end of the pipe entering the condenser. This means that flashing occurs at the end of the pipe under all operating conditions, and the effect can be greater than that of other parts. As a result, since severe wall thinning occurred at the end of the pipeline entering the condenser, it was evaluated that flashing by the high-velocity two-phase fluid was the direct cause of the wall thinning in the MSR drain pipes. The results of this study will contribute to establishing appropriate countermeasures in the event of pipe wall thinning in the future.
作者 Kyeongmo Hwang Ilsu So Hyukki Seo Kyeongmo Hwang;Ilsu So;Hyukki Seo(KEPCO E&C, Gimcheon-si, Korea)
机构地区 KEPCO E&C
出处 《World Journal of Nuclear Science and Technology》 CAS 2022年第3期101-112,共12页 核科学与技术国际期刊(英文)
关键词 Wall Thinning ToSPACE FLUENT FLASHING CAVITATION Wall Thinning ToSPACE FLUENT Flashing Cavitation
  • 相关文献

参考文献3

二级参考文献2

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部