期刊文献+

Increased resistance to apoptosis during differentiation and syncytialization of BeWo choriocarcinoma cells

Increased resistance to apoptosis during differentiation and syncytialization of BeWo choriocarcinoma cells
下载PDF
导出
摘要 Transition from mononuclear villous cytotrophoblast into multinuclear syncytiotrophoblast in the human placenta is accompanied by changes in apoptosis-related proteins and an apparent increased resistance to induced apoptosis. We investigated the specific nature and timing of changes in Bcl-2, Bax, p53, and caspases 3 and 8 in forskolin-treated BeWo choriocarcinoma cells, a model for villous cytotrophoblast differentiation. BeWo cells were treated with forskolin or vehicle alone for up to 72 h and evaluated at 24 h intervals for syncytialization and quantitative expression specific apoptosis-related proteins and mRNAs. Syncytialization was quantified using fluorescent staining of intercellular membranes and enumeration of the percentage of nuclei in multinucleate cells, and differential localization of apoptosis-related proteins to multinuclear or mononuclear cells was determined by quantitative immunofluorescence. Forskolin treatment for up to 72 h resulted in 80% syncytialization, increased expression of Bcl-2 protein (P ) and mRNA (P ), and significantly decreased expression of protein and mRNA for Bax, p53, and caspases 3 and 8. Syncytialized cells expressed higher levels of Bcl-2 protein concurrent with increased resistance to cisplatin-induced apoptosis. Thus, syncytialization of BeWo cells was accompanied by altered transcription of apoptotic-related proteins characteristic of increased apoptosis resistance secondary to increased expression of the anti-apoptotic protein Bcl-2 and diminish expression of pro-apoptotic proteins. Transition from mononuclear villous cytotrophoblast into multinuclear syncytiotrophoblast in the human placenta is accompanied by changes in apoptosis-related proteins and an apparent increased resistance to induced apoptosis. We investigated the specific nature and timing of changes in Bcl-2, Bax, p53, and caspases 3 and 8 in forskolin-treated BeWo choriocarcinoma cells, a model for villous cytotrophoblast differentiation. BeWo cells were treated with forskolin or vehicle alone for up to 72 h and evaluated at 24 h intervals for syncytialization and quantitative expression specific apoptosis-related proteins and mRNAs. Syncytialization was quantified using fluorescent staining of intercellular membranes and enumeration of the percentage of nuclei in multinucleate cells, and differential localization of apoptosis-related proteins to multinuclear or mononuclear cells was determined by quantitative immunofluorescence. Forskolin treatment for up to 72 h resulted in 80% syncytialization, increased expression of Bcl-2 protein (P ) and mRNA (P ), and significantly decreased expression of protein and mRNA for Bax, p53, and caspases 3 and 8. Syncytialized cells expressed higher levels of Bcl-2 protein concurrent with increased resistance to cisplatin-induced apoptosis. Thus, syncytialization of BeWo cells was accompanied by altered transcription of apoptotic-related proteins characteristic of increased apoptosis resistance secondary to increased expression of the anti-apoptotic protein Bcl-2 and diminish expression of pro-apoptotic proteins.
出处 《Advances in Bioscience and Biotechnology》 2012年第6期805-813,共9页 生命科学与技术进展(英文)
关键词 BEWO TROPHOBLAST PLACENTA CASPASE 8 CASPASE 3 Bcl-2 INTERCELLULAR Fusion BeWo Trophoblast Placenta Caspase 8 Caspase 3 Bcl-2 Intercellular Fusion
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部