期刊文献+

Methylene blue protects mitochondrial respiration from ethanol withdrawal stress 被引量:1

Methylene blue protects mitochondrial respiration from ethanol withdrawal stress
下载PDF
导出
摘要 Methylene blue (MB), a tricyclic phenothiazine drug, has been reported to enhance mitochondrial functions including mitochondrial respiration. By comparison, stress associated with abrupt ethanol withdrawal (EW) impedes mitochondrial functions. We investigated whether MB protects mitochondrial respiration and cell survival from EW stress through a key mitochondrial enzyme, cytochrome c oxidase (COX). We also investigated whether the MB’s protection involves the inhibition of an excitatory neurotransmitter, glutamate. Male rats were exposed to and withdrawn from ethanol-diet (7.5%, 5 weeks). MB (0.5 mg/kg, intraperitoneal) was injected for the last 5 days of ethanol-diet and on the first day of EW. Cerebellum was then harvested to measure mitochondrial respiration and COX expression using real-time XF respirometer and immunohistochemistry, respectively. Separately, HT22 cells (a murine hippocampal cell line) were exposed to and abruptly withdrawn for 4 hours from chronic ethanol (100 mM, 3 days). MB was administered during EW with or without a COX inhibitor (NaN3) or glutamate. Mitochondrial respiration, COX content, and cell viability were then assessed using real-time XF respirometer, an immunoblot method, and Calcein assay, respectively. MB attenuated the suppressing effects of EW on mitochondrial respiration, COX content, and cell survival. This protection was reduced after NaN3 or glutamate cotreatment. These results suggest that MB treatment help maintain mitochondrial respiratory and cellular integrity through COX-upregulation and glutamateinhibition upon EW stress. MB treatment may help identify mitochondrial mechanisms underlying hyperexcitatory CNS disorders. Methylene blue (MB), a tricyclic phenothiazine drug, has been reported to enhance mitochondrial functions including mitochondrial respiration. By comparison, stress associated with abrupt ethanol withdrawal (EW) impedes mitochondrial functions. We investigated whether MB protects mitochondrial respiration and cell survival from EW stress through a key mitochondrial enzyme, cytochrome c oxidase (COX). We also investigated whether the MB’s protection involves the inhibition of an excitatory neurotransmitter, glutamate. Male rats were exposed to and withdrawn from ethanol-diet (7.5%, 5 weeks). MB (0.5 mg/kg, intraperitoneal) was injected for the last 5 days of ethanol-diet and on the first day of EW. Cerebellum was then harvested to measure mitochondrial respiration and COX expression using real-time XF respirometer and immunohistochemistry, respectively. Separately, HT22 cells (a murine hippocampal cell line) were exposed to and abruptly withdrawn for 4 hours from chronic ethanol (100 mM, 3 days). MB was administered during EW with or without a COX inhibitor (NaN3) or glutamate. Mitochondrial respiration, COX content, and cell viability were then assessed using real-time XF respirometer, an immunoblot method, and Calcein assay, respectively. MB attenuated the suppressing effects of EW on mitochondrial respiration, COX content, and cell survival. This protection was reduced after NaN3 or glutamate cotreatment. These results suggest that MB treatment help maintain mitochondrial respiratory and cellular integrity through COX-upregulation and glutamateinhibition upon EW stress. MB treatment may help identify mitochondrial mechanisms underlying hyperexcitatory CNS disorders.
出处 《Advances in Bioscience and Biotechnology》 2013年第7期24-34,共11页 生命科学与技术进展(英文)
关键词 Cell VIABILITY Ethanol WITHDRAWAL METHYLENE Blue Mitochondrial RESPIRATION CYTOCHROME C OXIDASE Cell Viability Ethanol Withdrawal Methylene Blue Mitochondrial Respiration Cytochrome C Oxidase
  • 相关文献

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部