期刊文献+

Some substrates of P-glycoprotein targeting <i>β</i>-amyloid clearance by quantitative structure-activity relationship (QSAR)/membrane-interaction (MI)-QSAR analysis

Some substrates of P-glycoprotein targeting <i>β</i>-amyloid clearance by quantitative structure-activity relationship (QSAR)/membrane-interaction (MI)-QSAR analysis
下载PDF
导出
摘要 The pathogenesis of Alzheimer’s disease (AD) putatively involves a compromised blood-brain barrier (BBB). In particular, the importance of brain-to-blood transport of brain-derived metabolites across the BBB has gained increasing attention as a potential mechanism in the pathogenesis of neurodegenerative disorders such as AD, which is characterized by the aberrant polymerization and accumulation of specific misfolded proteins, particularly β-amyloid (Aβ), a neuropathological hallmark of AD. P-glycoprotein (P-gp), a major component of the BBB, plays a role in the etiology of AD through Aβ clearance from the brain. Our QSAR models on a series of purine-type and propafenone-type substrates of P-gp showed that the interaction between P-gp and its modulators depended on Molar Refractivity, LogP, and Shape Attribute of drugs it transports. Meanwhile, another model on BBB partitioning of some compounds revealed that BBB partitioning relied upon the polar surface area, LogP, Balaban Index, the strength of a molecule combined with the membrane-water complex, and the changeability of the structure of a solute-membrane-water complex. The predictive model on BBB partitioning contributes to the discovery of some molecules through BBB as potential AD therapeutic drugs. Moreover, the interaction model of P-gp and modulators for treatment of multidrug resistance (MDR) indicates the discovery of some molecules to increase Aβ clearance from the brain and reduce Aβ brain accumulation by regulating BBB P-gp in the early stages of AD. The mechanism provides a new insight into the therapeutic strategy for AD. The pathogenesis of Alzheimer’s disease (AD) putatively involves a compromised blood-brain barrier (BBB). In particular, the importance of brain-to-blood transport of brain-derived metabolites across the BBB has gained increasing attention as a potential mechanism in the pathogenesis of neurodegenerative disorders such as AD, which is characterized by the aberrant polymerization and accumulation of specific misfolded proteins, particularly β-amyloid (Aβ), a neuropathological hallmark of AD. P-glycoprotein (P-gp), a major component of the BBB, plays a role in the etiology of AD through Aβ clearance from the brain. Our QSAR models on a series of purine-type and propafenone-type substrates of P-gp showed that the interaction between P-gp and its modulators depended on Molar Refractivity, LogP, and Shape Attribute of drugs it transports. Meanwhile, another model on BBB partitioning of some compounds revealed that BBB partitioning relied upon the polar surface area, LogP, Balaban Index, the strength of a molecule combined with the membrane-water complex, and the changeability of the structure of a solute-membrane-water complex. The predictive model on BBB partitioning contributes to the discovery of some molecules through BBB as potential AD therapeutic drugs. Moreover, the interaction model of P-gp and modulators for treatment of multidrug resistance (MDR) indicates the discovery of some molecules to increase Aβ clearance from the brain and reduce Aβ brain accumulation by regulating BBB P-gp in the early stages of AD. The mechanism provides a new insight into the therapeutic strategy for AD.
出处 《Advances in Bioscience and Biotechnology》 2013年第9期872-895,共24页 生命科学与技术进展(英文)
关键词 P-Glycoproteins Quantitative STRUCTURE-ACTIVITY Relationship ATP-BINDING Cassette Transporters MULTIDRUG Resistance Blood-Brain Barrier P-Glycoproteins Quantitative Structure-Activity Relationship ATP-Binding Cassette Transporters Multidrug Resistance Blood-Brain Barrier
  • 相关文献

参考文献1

二级参考文献2

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部