期刊文献+

Application of High-Throughput Sequencing: Discovery of Informative SNPs to Subtype <i>Bacillus anthracis</i>

Application of High-Throughput Sequencing: Discovery of Informative SNPs to Subtype <i>Bacillus anthracis</i>
下载PDF
导出
摘要 Single Nucleotide Polymorphisms (SNPs) are the most common and abundant genetic variation found in the genome of any living species, from bacteria to humans. In bacterial genotyping, these evolutionarily stable point mutations represent important DNA markers that can be used to elucidate deep phylogenetic relationships among worldwide strains, but also to discriminate closely related strains. With the advent of next generation sequencing (NGS) technologies, affordable solutions are now available to get access to the complete genome sequence of an organism. Sequencing efforts of an increasing number of strains provide an unprecedented opportunity to create comprehensive species phylogenies. In this study, a comparative analysis of 161 genomes of Bacillus anthracis has being conducted to discover new informative SNPs that further resolves B. anthracis SNP-based phylogenetic tree. Nine previously unpublished SNPs that define major groups or sub-groups within the B. anthracis species were selected and developed into SNP discriminative assays. We report here a cost-effective high-resolution melting-based genotyping method for the screening of 27 canonical SNPs that includes these new diagnostic markers. The present assays are useful to rapidly assign an isolate to one sub-lineages or sub-groups and determine its phylogenetic placement on the B. anthracis substructure population. Single Nucleotide Polymorphisms (SNPs) are the most common and abundant genetic variation found in the genome of any living species, from bacteria to humans. In bacterial genotyping, these evolutionarily stable point mutations represent important DNA markers that can be used to elucidate deep phylogenetic relationships among worldwide strains, but also to discriminate closely related strains. With the advent of next generation sequencing (NGS) technologies, affordable solutions are now available to get access to the complete genome sequence of an organism. Sequencing efforts of an increasing number of strains provide an unprecedented opportunity to create comprehensive species phylogenies. In this study, a comparative analysis of 161 genomes of Bacillus anthracis has being conducted to discover new informative SNPs that further resolves B. anthracis SNP-based phylogenetic tree. Nine previously unpublished SNPs that define major groups or sub-groups within the B. anthracis species were selected and developed into SNP discriminative assays. We report here a cost-effective high-resolution melting-based genotyping method for the screening of 27 canonical SNPs that includes these new diagnostic markers. The present assays are useful to rapidly assign an isolate to one sub-lineages or sub-groups and determine its phylogenetic placement on the B. anthracis substructure population.
机构地区 University Paris-Est
出处 《Advances in Bioscience and Biotechnology》 2014年第7期669-677,共9页 生命科学与技术进展(英文)
关键词 SNPS Bacillus ANTHRACIS Genotyping HRM Phylogeny SNPs Bacillus anthracis Genotyping HRM Phylogeny
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部