摘要
The present study describes the characterization of crude protease extract from Arthrobacter arilaitensis Re117 and its evaluation in solid and liquid detergent. One caseinolytic protease clear band was observed in zymogram. The crude alkaline protease showed optimum activity at pH 9.0 and 50°C, and it was highly stable over a wide range of pH from 8.0 to 9.0. Proteolytic enzymes showed extreme stability towards non-ionic surfactants (Tween 80, Tween 20 and Triton X-100) and stimulate activity towards oxidizing agents such as sodium perborate. They also showed high stability and compatibility with various laundry solid detergents from Tunisian market. The protease of A. arilaitensis Re117, was also tested for shrimp waste deproteinization to produce chitin. The protein removal with a ratio E/S of 20 was about 83%. The novelties of the Re117 protease include its high stability to organic solvents and surfactants. These unique properties make it an ideal choice for application in detergent formulations and enzymatic peptide synthesis. In addition, the enzyme may find potential applications in the deproteinization of shrimp wastes to produce chitin.
The present study describes the characterization of crude protease extract from Arthrobacter arilaitensis Re117 and its evaluation in solid and liquid detergent. One caseinolytic protease clear band was observed in zymogram. The crude alkaline protease showed optimum activity at pH 9.0 and 50°C, and it was highly stable over a wide range of pH from 8.0 to 9.0. Proteolytic enzymes showed extreme stability towards non-ionic surfactants (Tween 80, Tween 20 and Triton X-100) and stimulate activity towards oxidizing agents such as sodium perborate. They also showed high stability and compatibility with various laundry solid detergents from Tunisian market. The protease of A. arilaitensis Re117, was also tested for shrimp waste deproteinization to produce chitin. The protein removal with a ratio E/S of 20 was about 83%. The novelties of the Re117 protease include its high stability to organic solvents and surfactants. These unique properties make it an ideal choice for application in detergent formulations and enzymatic peptide synthesis. In addition, the enzyme may find potential applications in the deproteinization of shrimp wastes to produce chitin.