摘要
A model of synapse-astrocyte interactions is proposed which enables repeated neuron-to-neuron connections from the single synapse to the network level. Specifically, the possibility that astrocytes may be organized in networks and processes of a single astrocyte may enable intracellular signaling loops via gap junctions is suggested as a plausible biophysical correlate for hierarchical signaling organization of cyclic pathways. This process ultimately translates to abstract planning, intention and execution of complex actions. The formalism applied is called proemial counting and it enables the generation of cycles of various length in the astroglial network, interpreted as intended action programs. Furthermore, the implementation of a model of the reticular formation in a robot brain based on glial-neuronal interactions is suggested. Finally, the implementation of robot brains with self-reflexive capabilities is discussed.
A model of synapse-astrocyte interactions is proposed which enables repeated neuron-to-neuron connections from the single synapse to the network level. Specifically, the possibility that astrocytes may be organized in networks and processes of a single astrocyte may enable intracellular signaling loops via gap junctions is suggested as a plausible biophysical correlate for hierarchical signaling organization of cyclic pathways. This process ultimately translates to abstract planning, intention and execution of complex actions. The formalism applied is called proemial counting and it enables the generation of cycles of various length in the astroglial network, interpreted as intended action programs. Furthermore, the implementation of a model of the reticular formation in a robot brain based on glial-neuronal interactions is suggested. Finally, the implementation of robot brains with self-reflexive capabilities is discussed.