期刊文献+

Bioethanol Production from <i>Chlorella vulgaris</i>Biomass Cultivated with Plantain (<i>Musa paradisiaca</i>) Peels Extract

Bioethanol Production from <i>Chlorella vulgaris</i>Biomass Cultivated with Plantain (<i>Musa paradisiaca</i>) Peels Extract
下载PDF
导出
摘要 The feasibility of nutrient uptake by Chlorella vulgaris using a cheap carbon source such as plantain peel extract was studied and its biomass utilized for bioethanol production. Unripe plantain peels were obtained, processed, infused for 48 hrs, extracted and cultivated with the Chlorella species for a period of fourteen days. The microalgal carbohydrate content was hydrolyzed with acid and enzyme while the hydrolysate fermented with 10% concentration of Saccharomyces sp. and Aspergillus sp. at 30°C and pH 4.5 using Separate Hydrolysis and Fermentation (SHF) and Separate Hydrolysis and Co-culture Fermentation (SHCF) methods. Results show that maximum cell growth of 1.56 (OD) and biomass concentration of 19 g/l were obtained with 48 hrs infusion. The result indicated that C. vulgaris utilized PPE medium as a sole carbon substrate and stimulated the secretion of biomass. The highest reducing sugar of 0.63 mg/ml was obtained after hydrolysis of the biomass, while the ethanol production yield of 0.33 g/l was obtained after fermentation. The ethanol production yield increased with the increase in fermentation time, while the reducing sugar was reduced after five days of fermentation. The highest ethanol percentage of 10.82% v/v was obtained from the distillate. This study showed that plantain peel can be utilized by C. vulgaris which provides a feasible route of reducing production cost of bioethanol from a cheap carbon substrate for biomass and bioenergy production. The feasibility of nutrient uptake by Chlorella vulgaris using a cheap carbon source such as plantain peel extract was studied and its biomass utilized for bioethanol production. Unripe plantain peels were obtained, processed, infused for 48 hrs, extracted and cultivated with the Chlorella species for a period of fourteen days. The microalgal carbohydrate content was hydrolyzed with acid and enzyme while the hydrolysate fermented with 10% concentration of Saccharomyces sp. and Aspergillus sp. at 30°C and pH 4.5 using Separate Hydrolysis and Fermentation (SHF) and Separate Hydrolysis and Co-culture Fermentation (SHCF) methods. Results show that maximum cell growth of 1.56 (OD) and biomass concentration of 19 g/l were obtained with 48 hrs infusion. The result indicated that C. vulgaris utilized PPE medium as a sole carbon substrate and stimulated the secretion of biomass. The highest reducing sugar of 0.63 mg/ml was obtained after hydrolysis of the biomass, while the ethanol production yield of 0.33 g/l was obtained after fermentation. The ethanol production yield increased with the increase in fermentation time, while the reducing sugar was reduced after five days of fermentation. The highest ethanol percentage of 10.82% v/v was obtained from the distillate. This study showed that plantain peel can be utilized by C. vulgaris which provides a feasible route of reducing production cost of bioethanol from a cheap carbon substrate for biomass and bioenergy production.
出处 《Advances in Bioscience and Biotechnology》 2017年第12期478-490,共13页 生命科学与技术进展(英文)
关键词 BIOETHANOL Chlorella vulgaris Fermentation Hydrolysis PLANTAIN Peel Bioethanol Chlorella vulgaris Fermentation Hydrolysis Plantain Peel
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部