期刊文献+

Ontogenes and the Paradox of Homologous Pairing 被引量:1

Ontogenes and the Paradox of Homologous Pairing
下载PDF
导出
摘要 The mutations in ontogenes have been shown to drastically increase the nondisjunction of X chromosomes in the <i><span style="font-family:Verdana;">D. melanogaster</span></i><span style="font-family:Verdana;"> meiosis. This means that ontogenes are involved in the process that brings the homologs together although both the genes and ontogenes are finally paired. The phenomenon named the paradox of homologous pairing is described. Chromosomal rearrangements (inversions and translocations) lead to formation of specific topological figures (loops and crosses) during pairing. The mutual arrangement of the nucleotide sequences of homologous ontogenes before and after formation of such figures is different. Their arrangement coincides after a figure is formed and the pairing looks homologous. However, before the figure is formed, their arrangement does not match and the pairing is actually nonhomologous. The available data on ontogenes allows this paradox to be resolved. It is assumed that the sequence of each ontogene possesses a factor that 1) is a product of this nucleotide sequence;2) is co-located with this sequence;and 3) generates approaching independently of nucleotide sequence position in space. The sole candidate to the role of this factor is the DNA conformation of ontogene. The conformation in the form of a solenoid of DNA is able to generate</span><span style="font-family:Verdana;"> an</span><span style="font-family:Verdana;"> electromagnetic field independent of the orientation of the DNA itself. The proposed resolution of the paradox is considered in terms of the problem of genetic homology.</span> The mutations in ontogenes have been shown to drastically increase the nondisjunction of X chromosomes in the <i><span style="font-family:Verdana;">D. melanogaster</span></i><span style="font-family:Verdana;"> meiosis. This means that ontogenes are involved in the process that brings the homologs together although both the genes and ontogenes are finally paired. The phenomenon named the paradox of homologous pairing is described. Chromosomal rearrangements (inversions and translocations) lead to formation of specific topological figures (loops and crosses) during pairing. The mutual arrangement of the nucleotide sequences of homologous ontogenes before and after formation of such figures is different. Their arrangement coincides after a figure is formed and the pairing looks homologous. However, before the figure is formed, their arrangement does not match and the pairing is actually nonhomologous. The available data on ontogenes allows this paradox to be resolved. It is assumed that the sequence of each ontogene possesses a factor that 1) is a product of this nucleotide sequence;2) is co-located with this sequence;and 3) generates approaching independently of nucleotide sequence position in space. The sole candidate to the role of this factor is the DNA conformation of ontogene. The conformation in the form of a solenoid of DNA is able to generate</span><span style="font-family:Verdana;"> an</span><span style="font-family:Verdana;"> electromagnetic field independent of the orientation of the DNA itself. The proposed resolution of the paradox is considered in terms of the problem of genetic homology.</span>
作者 B. F. Chadov N. B. Fedorova B. F. Chadov;N. B. Fedorova(Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia)
出处 《Advances in Bioscience and Biotechnology》 2021年第1期1-9,共9页 生命科学与技术进展(英文)
关键词 Homologous Pairing MEIOSIS Ontogene DNA Conformation Electromagnetic Field DROSOPHILA Homologous Pairing Meiosis Ontogene DNA Conformation Electromagnetic Field Drosophila
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部