期刊文献+

Microbial Adhesion on Orthodontic Ligating Materials: An <i>in Vitro</i>Assessment

Microbial Adhesion on Orthodontic Ligating Materials: An <i>in Vitro</i>Assessment
下载PDF
导出
摘要 Orthodontic fixed appliance therapy is the commonest mode of treatment for most types of malocclusions (teeth irregularities). However, these materials are liable for microbial adhesion, which predisposes the wearer to increased microbial burden. The present study aims to evaluate, microbial adhesion and growth on commonly used orthodontic ligating materials (Teflon coated wire, stainless steel wire, elastic rings) under in vitro condition. Furthermore, the role of saliva on adhesion and microbial colonization on said materials was also assessed. Experiments were conducted with three different orthodontic ligating materials each in 6 numbers. Growth OD, metabolic activity and cell viability were the experimental variables in addition to SEM (Scanning Electron Microscopy) analysis performed. Results revealed irespective of the nature of the ligating materials, microbial adhesion and growth were observed in all the materials and suggested that the chosen materials promotes microbial adhesion. Nevertheless, stainless steel ligatures were less prone to adhesion compared to Teflon coated and elastic ligatures. Presence of saliva accelerates adhesion and growth. Orthodontic fixed appliance therapy is the commonest mode of treatment for most types of malocclusions (teeth irregularities). However, these materials are liable for microbial adhesion, which predisposes the wearer to increased microbial burden. The present study aims to evaluate, microbial adhesion and growth on commonly used orthodontic ligating materials (Teflon coated wire, stainless steel wire, elastic rings) under in vitro condition. Furthermore, the role of saliva on adhesion and microbial colonization on said materials was also assessed. Experiments were conducted with three different orthodontic ligating materials each in 6 numbers. Growth OD, metabolic activity and cell viability were the experimental variables in addition to SEM (Scanning Electron Microscopy) analysis performed. Results revealed irespective of the nature of the ligating materials, microbial adhesion and growth were observed in all the materials and suggested that the chosen materials promotes microbial adhesion. Nevertheless, stainless steel ligatures were less prone to adhesion compared to Teflon coated and elastic ligatures. Presence of saliva accelerates adhesion and growth.
出处 《Advances in Microbiology》 2013年第1期108-114,共7页 微生物学(英文)
关键词 Adhesion GROWTH ORTHODONTIC Ligatures GROWTH OD CFU Metabolic Activity XTT Adhesion Growth Orthodontic Ligatures Growth OD CFU Metabolic Activity XTT
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部