期刊文献+

Nitrogen Constrains the Growth of Late Summer Cyanobacterial Blooms in Lake Erie 被引量:3

Nitrogen Constrains the Growth of Late Summer Cyanobacterial Blooms in Lake Erie
下载PDF
导出
摘要 Phosphorus (P) is generally considered to be the main limiting nutrient to freshwater phytoplankton productivity. However, recent research is drawing attention to the importance of nitrogen (N) in freshwater eutrophication and N often constrains growth of cyanobacteria in small lakes. In this study we determined phytoplankton nutrient limitation in a large lake, Lake Erie during two growing seasons. During 2010 and 2011, nutrient enrichment bioassays (+P, +N and, +P and N) were conducted monthly from June through September with water collected in Maumee Bay (site MB18) and in the center of the western basin (site WBC). Nutrient concentrations were monitored every other week. At MB18, total P concentration was often >3 mmol/L and nitrate concentration decreased from >250 mmol/L in early summer to mmol/L in late summer. Nitrogen and P levels were about five-fold less at WBC. Bioassays indicated that phytoplankton nutrient limitation varied in summer, spatially, and even among phytoplankton groups. For site MB18, +P increased chlorophyll concentration in one of the eight bioassays, indicating that P did not typically limit production. For site WBC, +P increased chlorophyll concentration in six of the eight bioassays. As a result of very low ambient nitrate concentration (mmol/L) in late summer, +N (without P) increased chlorophyll concentration, suggesting symptoms of N-limitation. The N-fixing cyanobacterium Anabaena became dominant following N-limitation. This study highlights the need to reduce P loading to restore water quality. Furthermore, due to low nitrate concentration, the severity of the cyanobacterial blooms could be worse if not for N-limitation in western Lake Erie. Phosphorus (P) is generally considered to be the main limiting nutrient to freshwater phytoplankton productivity. However, recent research is drawing attention to the importance of nitrogen (N) in freshwater eutrophication and N often constrains growth of cyanobacteria in small lakes. In this study we determined phytoplankton nutrient limitation in a large lake, Lake Erie during two growing seasons. During 2010 and 2011, nutrient enrichment bioassays (+P, +N and, +P and N) were conducted monthly from June through September with water collected in Maumee Bay (site MB18) and in the center of the western basin (site WBC). Nutrient concentrations were monitored every other week. At MB18, total P concentration was often >3 mmol/L and nitrate concentration decreased from >250 mmol/L in early summer to mmol/L in late summer. Nitrogen and P levels were about five-fold less at WBC. Bioassays indicated that phytoplankton nutrient limitation varied in summer, spatially, and even among phytoplankton groups. For site MB18, +P increased chlorophyll concentration in one of the eight bioassays, indicating that P did not typically limit production. For site WBC, +P increased chlorophyll concentration in six of the eight bioassays. As a result of very low ambient nitrate concentration (mmol/L) in late summer, +N (without P) increased chlorophyll concentration, suggesting symptoms of N-limitation. The N-fixing cyanobacterium Anabaena became dominant following N-limitation. This study highlights the need to reduce P loading to restore water quality. Furthermore, due to low nitrate concentration, the severity of the cyanobacterial blooms could be worse if not for N-limitation in western Lake Erie.
出处 《Advances in Microbiology》 2013年第6期16-26,共11页 微生物学(英文)
关键词 CYANOBACTERIA EUTROPHICATION NITROGEN Phosphorus PHYTOPLANKTON Cyanobacteria Eutrophication Nitrogen Phosphorus Phytoplankton
  • 相关文献

同被引文献38

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部