摘要
Biological nitrogen fixation is a very valuable alternative to nitrogen fertilizer. This process will be discussed in the “Biological Nitrogen Fixation” book. A wide array of free-living and associative nitrogen fixing organisms (diazotrophs) will be covered. The most extensively studied and applied example of biological nitrogen fixation is the symbiotic interaction between nitrogen fixing “rhizobia” and legume plants. While legumes are important as major food and feed crops, cereals such as wheat, maize and rice are the primary food crops, but do not have this symbiotic nitrogen fixing interaction with rhizobia. It has thus been a “holy grail” to transfer the ability to fix nitrogen to the cereals and this topic will be also addressed in these books.
Biological nitrogen fixation is a very valuable alternative to nitrogen fertilizer. This process will be discussed in the “Biological Nitrogen Fixation” book. A wide array of free-living and associative nitrogen fixing organisms (diazotrophs) will be covered. The most extensively studied and applied example of biological nitrogen fixation is the symbiotic interaction between nitrogen fixing “rhizobia” and legume plants. While legumes are important as major food and feed crops, cereals such as wheat, maize and rice are the primary food crops, but do not have this symbiotic nitrogen fixing interaction with rhizobia. It has thus been a “holy grail” to transfer the ability to fix nitrogen to the cereals and this topic will be also addressed in these books.
作者
Frans J. de Bruijn
Frans J. de Bruijn(INRA/CNRS Laboratory of Plant-Microbe Interactions, Castanet, France)