摘要
The transcription factor VaCBF2, which interacts with C-repeat/DRE and its promoter, was isolated from Vitis amurensis. The VaCBF2 amino acid sequence contained a conserved AP2 domain of 56 amino acids and a potential nuclear localization sequence. The sequence of VaCBF2 showed a high level of homology with other CBF2 family members. Phylogenetic analysis showed that the amino acid sequences may be CBF2 proteins with evolutionary relationship. Quantitative reverse-transcription polymerase chain reaction analysis indicated that the expression of VaCBF2 gene in tissues (roots, stems, leaves, and petioles) was induced by low temperature, high salinity, and application of abscisic acid and salicylic acid in a time-dependent manner but to different extents in the cold-hardy V. amurensis and the less cold-hardy Vitis vinifera. The presence of cis-elements such as MYC and ABRE in VaCBF2 promoter further confirmed that this promoter was a component of the CBF transduction pathway involved in plant response to multiple stresses.
The transcription factor VaCBF2, which interacts with C-repeat/DRE and its promoter, was isolated from Vitis amurensis. The VaCBF2 amino acid sequence contained a conserved AP2 domain of 56 amino acids and a potential nuclear localization sequence. The sequence of VaCBF2 showed a high level of homology with other CBF2 family members. Phylogenetic analysis showed that the amino acid sequences may be CBF2 proteins with evolutionary relationship. Quantitative reverse-transcription polymerase chain reaction analysis indicated that the expression of VaCBF2 gene in tissues (roots, stems, leaves, and petioles) was induced by low temperature, high salinity, and application of abscisic acid and salicylic acid in a time-dependent manner but to different extents in the cold-hardy V. amurensis and the less cold-hardy Vitis vinifera. The presence of cis-elements such as MYC and ABRE in VaCBF2 promoter further confirmed that this promoter was a component of the CBF transduction pathway involved in plant response to multiple stresses.