摘要
Maximizing the expression of seed quality traits by understanding how they are affected by environmental variables may help develop high quality nutritious soybeans. Eight specialty soybean breeding lines were grown at two Arkansas locations differing by soil texture, with three replications in 2011. Before the reproductive period, soil and leaf samples were collected from each plot. Soil samples were analyzed for particle size distribution, electrical conductivity, pH, and a set of extractable nutrients from the top 12.5 cm, while leaf samples were analyzed for the same set of nutrients as the soil samples. At maturity, seed samples were analyzed for the same set of nutrients as were leaf and soil samples, plus protein, oil, fatty acids, and sugars. All leaf elements were within the adequate levels for soybean production at both locations. Overall, seed composition of breeding lines did not differ among locations and no significant changes in breeding line ranking among locations were observed. Attempting to modify seed composition by nutrient fertilization may not be profitable, as no direct relationships were observed between leaf or soil chemical properties, and seed composition. These findings may provide a starting point for future studies on fertilization and management practices that improve soybean seed quality.
Maximizing the expression of seed quality traits by understanding how they are affected by environmental variables may help develop high quality nutritious soybeans. Eight specialty soybean breeding lines were grown at two Arkansas locations differing by soil texture, with three replications in 2011. Before the reproductive period, soil and leaf samples were collected from each plot. Soil samples were analyzed for particle size distribution, electrical conductivity, pH, and a set of extractable nutrients from the top 12.5 cm, while leaf samples were analyzed for the same set of nutrients as the soil samples. At maturity, seed samples were analyzed for the same set of nutrients as were leaf and soil samples, plus protein, oil, fatty acids, and sugars. All leaf elements were within the adequate levels for soybean production at both locations. Overall, seed composition of breeding lines did not differ among locations and no significant changes in breeding line ranking among locations were observed. Attempting to modify seed composition by nutrient fertilization may not be profitable, as no direct relationships were observed between leaf or soil chemical properties, and seed composition. These findings may provide a starting point for future studies on fertilization and management practices that improve soybean seed quality.