期刊文献+

Application of High Carbon:Nitrogen Material Enhanced the Formation of the Soil A Horizon and Nitrogen Fixation in a Tropical Agricultural Field 被引量:1

Application of High Carbon:Nitrogen Material Enhanced the Formation of the Soil A Horizon and Nitrogen Fixation in a Tropical Agricultural Field
下载PDF
导出
摘要 It is known that cropping causes soil carbon loss, which is a critical issue, especially in tropical agriculture. Nitrogen input generally increases net primary production but does not increase soil carbon content because nitrogen input enhances soil organic carbon mineralization by microorganisms. A farmer conducted a trial in which he applied material with a high carbon:nitrogen (C:N) ratio without additional nitrogen fertilizer, and achieved a higher productivity than that of conventional farms. Based on his results, we conducted a survey to evaluate the effects of high C:N ratio organic material on the productivity, soil profile, microbial activity, and carbon and nitrogen balance of soil. Results demonstrate that high C:N ratio organic material enhanced the formation of the soil A horizon and increased soil carbon and nitrogen content. Approximately, 15 - 20 t·ha-1·crop-1 of fresh waste mushroom bed was applied to 15 crops over 4.5 years, and the total input of carbon and nitrogen were 5014 and 129 g·m-2, respectively. The soil nitrate nitrogen concentration was the same as that of the neighboring forest soil, which was lower than the standard limit for conventional agriculture;however, the average productivity of crops was approximately four times that of the national average. The soil Ap horizon increased in thickness by 7 cm, and aggregates reached a thickness of 29 cm in 4.5 years. The output/input ratios of total soil nitrogen and carbon were approximately 2.68 - 6.00 and 1.30 - 2.35, respectively, indicating that this method will maintain the carbon and nitrogen balance of the system. The observed soil microbial activity was one order of magnitude higher than that of a fallow field. The results indicate that this agricultural method remediates soil degradation, and improves food production. It is known that cropping causes soil carbon loss, which is a critical issue, especially in tropical agriculture. Nitrogen input generally increases net primary production but does not increase soil carbon content because nitrogen input enhances soil organic carbon mineralization by microorganisms. A farmer conducted a trial in which he applied material with a high carbon:nitrogen (C:N) ratio without additional nitrogen fertilizer, and achieved a higher productivity than that of conventional farms. Based on his results, we conducted a survey to evaluate the effects of high C:N ratio organic material on the productivity, soil profile, microbial activity, and carbon and nitrogen balance of soil. Results demonstrate that high C:N ratio organic material enhanced the formation of the soil A horizon and increased soil carbon and nitrogen content. Approximately, 15 - 20 t·ha-1·crop-1 of fresh waste mushroom bed was applied to 15 crops over 4.5 years, and the total input of carbon and nitrogen were 5014 and 129 g·m-2, respectively. The soil nitrate nitrogen concentration was the same as that of the neighboring forest soil, which was lower than the standard limit for conventional agriculture;however, the average productivity of crops was approximately four times that of the national average. The soil Ap horizon increased in thickness by 7 cm, and aggregates reached a thickness of 29 cm in 4.5 years. The output/input ratios of total soil nitrogen and carbon were approximately 2.68 - 6.00 and 1.30 - 2.35, respectively, indicating that this method will maintain the carbon and nitrogen balance of the system. The observed soil microbial activity was one order of magnitude higher than that of a fallow field. The results indicate that this agricultural method remediates soil degradation, and improves food production.
出处 《Agricultural Sciences》 2014年第12期1172-1181,共10页 农业科学(英文)
关键词 Carbon FOOD Security MICROORGANISMS NITROGEN SOIL Degradation Carbon Food Security Microorganisms Nitrogen Soil Degradation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部