期刊文献+

Effect of Potassium Deficiency on Root Growth and Nutrient Uptake in Maize (Zea mays L.) 被引量:2

Effect of Potassium Deficiency on Root Growth and Nutrient Uptake in Maize (Zea mays L.)
下载PDF
导出
摘要 Potassium (K) is an essential nutrient on the growth and development for maize (Zea Mays L.). And the developed root morphology and root activity have great significance to nutrient absorption and play an important role in the growth and development of plants. To explore the response to K-deficiency on root growth and nutrient absorption of maize, two inbred lines, 90-21-3 (Tolerance to K deficiency) and D937 (Sensitive to K deficiency) were carried out to investigate the root morphology, root activity, nutrient uptake and related traits. The results showed that K-deficiency inhibited the root growth of 90-21-3 and D937, but increased the ratio of root to shoot (R/S). The total length, root surface area, the root diameter and root volume of root system of 90-21-3 and D937 were significantly decreased by K deficiency, especially the fine root (0 - 0.4 mm) in root length and root surface area. In addition, the K concentration of root in the two lines was significantly decreased, but root activity was significantly improved, which promoted the absorption of the root system to Na+. Compared with D937, 90-21-3 was able to distribute more carbohydrates from shoot to the root system under K deficiency, alleviating the inhibition of root growth. The fine root system was the main part for absorption nutrient. The length and surface area of 90-12-3 were no difference, and significantly decreased by 12.90% and 17.65% in D937 after 5 d of K deficiency. As well, the root activity of 90-21-3 was significantly increased when encountered to K deficiency, which promoted the accumulation of Na+ and Ca2+ and regulated the osmotic stress. Therefore, it could be a responding mechanism for tolerance crop by maintaining large root system, increasing root activity and adjusting nutrient absorption to adapt to K deficiency. Potassium (K) is an essential nutrient on the growth and development for maize (Zea Mays L.). And the developed root morphology and root activity have great significance to nutrient absorption and play an important role in the growth and development of plants. To explore the response to K-deficiency on root growth and nutrient absorption of maize, two inbred lines, 90-21-3 (Tolerance to K deficiency) and D937 (Sensitive to K deficiency) were carried out to investigate the root morphology, root activity, nutrient uptake and related traits. The results showed that K-deficiency inhibited the root growth of 90-21-3 and D937, but increased the ratio of root to shoot (R/S). The total length, root surface area, the root diameter and root volume of root system of 90-21-3 and D937 were significantly decreased by K deficiency, especially the fine root (0 - 0.4 mm) in root length and root surface area. In addition, the K concentration of root in the two lines was significantly decreased, but root activity was significantly improved, which promoted the absorption of the root system to Na+. Compared with D937, 90-21-3 was able to distribute more carbohydrates from shoot to the root system under K deficiency, alleviating the inhibition of root growth. The fine root system was the main part for absorption nutrient. The length and surface area of 90-12-3 were no difference, and significantly decreased by 12.90% and 17.65% in D937 after 5 d of K deficiency. As well, the root activity of 90-21-3 was significantly increased when encountered to K deficiency, which promoted the accumulation of Na+ and Ca2+ and regulated the osmotic stress. Therefore, it could be a responding mechanism for tolerance crop by maintaining large root system, increasing root activity and adjusting nutrient absorption to adapt to K deficiency.
机构地区 College of Agronomy
出处 《Agricultural Sciences》 2017年第11期1263-1277,共15页 农业科学(英文)
关键词 MAIZE K DEFICIENCY ROOT Morphology ROOT Activity NUTRIENT ABSORPTION Maize K Deficiency Root Morphology Root Activity Nutrient Absorption
  • 相关文献

参考文献12

二级参考文献191

共引文献338

同被引文献34

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部