期刊文献+

Influence of Environmental and Microclimate Factors on the Coffee Beans Quality (C. canephora): Correlation between Chemical Analysis and Stable Free Radicals

下载PDF
导出
摘要 The present study reports a physicochemical comparison of shade-grown and sun-grown coffee beans, under unripe, rip and roasted-ripe conditions, using electrical conductivity measurements, electron paramagnetic resonance (EPR), infrared spectroscopy (FTIR), and high performance liquid chromatography (HPLC). Moreover, the assessed physicochemical parameters were compared with organoleptic evaluations based on the Coffee Quality Institute protocol. The values found for electrical conductivity, leached potassium, and stable free radicals were respectively 29%, 31%, and 350% higher for shade-grown coffee beans, whereas polyphenol oxidase enzymatic activity was 23% lower. By contrast, FTIR and HPLC measurements identified higher chlorogenic acid and lipid contents in sun-grown coffee beans. Importantly, the sensorial grade attributed to roasted-ripe grains was 12% higher for sun-grown coffee. Our findings suggest that shade-grown coffee beans have undergone microorganismal activity and undesired fermentation during cultivation, which resulted in lower coffee quality. A correlation between a set of selected physicochemical properties and organoleptic properties was robustly established and could be used in the development of future coffee bean quality control protocols. The present study reports a physicochemical comparison of shade-grown and sun-grown coffee beans, under unripe, rip and roasted-ripe conditions, using electrical conductivity measurements, electron paramagnetic resonance (EPR), infrared spectroscopy (FTIR), and high performance liquid chromatography (HPLC). Moreover, the assessed physicochemical parameters were compared with organoleptic evaluations based on the Coffee Quality Institute protocol. The values found for electrical conductivity, leached potassium, and stable free radicals were respectively 29%, 31%, and 350% higher for shade-grown coffee beans, whereas polyphenol oxidase enzymatic activity was 23% lower. By contrast, FTIR and HPLC measurements identified higher chlorogenic acid and lipid contents in sun-grown coffee beans. Importantly, the sensorial grade attributed to roasted-ripe grains was 12% higher for sun-grown coffee. Our findings suggest that shade-grown coffee beans have undergone microorganismal activity and undesired fermentation during cultivation, which resulted in lower coffee quality. A correlation between a set of selected physicochemical properties and organoleptic properties was robustly established and could be used in the development of future coffee bean quality control protocols.
出处 《Agricultural Sciences》 2018年第9期1173-1187,共15页 农业科学(英文)
基金 The authors acknowledge financial support from CNPq and FAPES Brazilian Government Agencies also the Laboratorio de Ciencias Fisicas,from Universidade Estadual Norte Fluminense,Rio de Janeiro,Brazil.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部