摘要
The Dictyostelium discoideum AMP-activated protein kinase (AMPK) snfA subcellular localization was studied in AX2 and stable HPF strains by use of AMPK antipeptide antibody and goat anti-rabbit Alexa-Flour 488-conjugated IgG antibody. The AMPK exhibited cytosolic localization patterns and uniform focalised concentrations in wild type and the strains alike. Constitutive activation and attenuation of the α subunit expression did not affect subcellular distribution of AMPK. However, snfA expression was more intense in strains in which AMPK was constitutively active compared with the AX2 but lesser in attenuation strains. The localisation of the snfA reinforced the putative standing that it had a plethora of cytoplasmic functions. Moreover, the oxidative cellular function would require a ubiquitous system and might coordinately regulate responses to metabolic requirements. Furthermore, the developmental phases of the life cycle would support the cytosolic localization;and since organelles were potentially reorganized or removed entirely during the transition from vegetative living to fruiting body morphology. This study provided insight into the subcellular distribution of AMPK in Dictyostelium discoideum. We demonstrated that AMPK localization was steady in AX2 and derived strains whether constitutively active or anti-sense inhibited depicting extreme genetic states.
The Dictyostelium discoideum AMP-activated protein kinase (AMPK) snfA subcellular localization was studied in AX2 and stable HPF strains by use of AMPK antipeptide antibody and goat anti-rabbit Alexa-Flour 488-conjugated IgG antibody. The AMPK exhibited cytosolic localization patterns and uniform focalised concentrations in wild type and the strains alike. Constitutive activation and attenuation of the α subunit expression did not affect subcellular distribution of AMPK. However, snfA expression was more intense in strains in which AMPK was constitutively active compared with the AX2 but lesser in attenuation strains. The localisation of the snfA reinforced the putative standing that it had a plethora of cytoplasmic functions. Moreover, the oxidative cellular function would require a ubiquitous system and might coordinately regulate responses to metabolic requirements. Furthermore, the developmental phases of the life cycle would support the cytosolic localization;and since organelles were potentially reorganized or removed entirely during the transition from vegetative living to fruiting body morphology. This study provided insight into the subcellular distribution of AMPK in Dictyostelium discoideum. We demonstrated that AMPK localization was steady in AX2 and derived strains whether constitutively active or anti-sense inhibited depicting extreme genetic states.