摘要
Soybean production in Vietnam has recently been threatened by the widespread dissemination of soybean rust (SBR) caused by the fungus Phakopsora pachyrhizi. Application of molecular breeding is considered as a feasible method to improve soybean rust resistance and minimize the adverse effects from overuse fungicides in this country. In this study, we have successfully applied molecular markers in a backcross breeding program to introgress the Rpp5 gene of SBR resistance into HL203, an elite Vietnamese soybean variety, from two donor lines of DT2000 and Stuart 99084B-28. The plants in BC4F1 generation had maximum contribution from the recurrent parents and retained SBR resistance gene.
Soybean production in Vietnam has recently been threatened by the widespread dissemination of soybean rust (SBR) caused by the fungus Phakopsora pachyrhizi. Application of molecular breeding is considered as a feasible method to improve soybean rust resistance and minimize the adverse effects from overuse fungicides in this country. In this study, we have successfully applied molecular markers in a backcross breeding program to introgress the Rpp5 gene of SBR resistance into HL203, an elite Vietnamese soybean variety, from two donor lines of DT2000 and Stuart 99084B-28. The plants in BC4F1 generation had maximum contribution from the recurrent parents and retained SBR resistance gene.