期刊文献+

<i>In Silico</i>Modeling of C1 Metabolism

<i>In Silico</i>Modeling of C1 Metabolism
下载PDF
导出
摘要 An integrative computational, in silico, model of C1 metabolism is developed from molecular pathway systems identified from a recent, comprehensive systematic bioinformatics review of C1 metabolism. C1 metabolism is essential for all organisms to provide one-carbon units for methylation and other types of modifications, as well as for nucleic acid, amino acid, and other biomolecule syntheses. C1 metabolism consists of three important molecular pathway systems: 1) methionine biosynthesis, 2) methylation cycle, and 3) formaldehyde detoxification. Each of the three molecular pathway systems is individually modeled using the CytoSolve?? Collaboratory?, a proven and scalable computational systems biology platform for in silico modeling of complex molecular pathway systems. The individual models predict the temporal behavior of formaldehyde, formate, sarcosine, glutathione (GSH), and many other key biomolecules involved in C1 metabolism, which may be hard to measure experimentally. The individual models are then coupled and integrated dynamically using CytoSolve to produce, to the authors’ knowledge, the first comprehensive computational model of C1 metabolism. In silico modeling of the individual and integrated C1 metabolism models enables the identification of the most sensitive parameters involved in the detoxification of formaldehyde. This integrative model of C1 metabolism, giving its systems-based nature, can likely serve as a platform for: 1) generalized research and study of C1 metabolism, 2) hypothesis generation that motivates focused and specific in vitro and in vivo testing in perhaps a more efficient manner, 3) expanding a systems biology understanding of plant bio-molecular systems by integrating other known molecular pathway systems associated with C1 metabolism, and 4) exploring and testing the potential effects of exogenous inputs on the C1 metabolism system. An integrative computational, in silico, model of C1 metabolism is developed from molecular pathway systems identified from a recent, comprehensive systematic bioinformatics review of C1 metabolism. C1 metabolism is essential for all organisms to provide one-carbon units for methylation and other types of modifications, as well as for nucleic acid, amino acid, and other biomolecule syntheses. C1 metabolism consists of three important molecular pathway systems: 1) methionine biosynthesis, 2) methylation cycle, and 3) formaldehyde detoxification. Each of the three molecular pathway systems is individually modeled using the CytoSolve?? Collaboratory?, a proven and scalable computational systems biology platform for in silico modeling of complex molecular pathway systems. The individual models predict the temporal behavior of formaldehyde, formate, sarcosine, glutathione (GSH), and many other key biomolecules involved in C1 metabolism, which may be hard to measure experimentally. The individual models are then coupled and integrated dynamically using CytoSolve to produce, to the authors’ knowledge, the first comprehensive computational model of C1 metabolism. In silico modeling of the individual and integrated C1 metabolism models enables the identification of the most sensitive parameters involved in the detoxification of formaldehyde. This integrative model of C1 metabolism, giving its systems-based nature, can likely serve as a platform for: 1) generalized research and study of C1 metabolism, 2) hypothesis generation that motivates focused and specific in vitro and in vivo testing in perhaps a more efficient manner, 3) expanding a systems biology understanding of plant bio-molecular systems by integrating other known molecular pathway systems associated with C1 metabolism, and 4) exploring and testing the potential effects of exogenous inputs on the C1 metabolism system.
机构地区 Systems Biology Group
出处 《American Journal of Plant Sciences》 2015年第9期1444-1465,共22页 美国植物学期刊(英文)
关键词 In Silico Modeling C1 METABOLISM CytoSolve Computational Systems Biology Bioinformatics Molecular Pathway Formaldehyde DETOXIFICATION Maize METHIONINE Biosynthesis Activated Methyl Cycle Folate-Mediated Pathways In Silico Modeling C1 Metabolism CytoSolve Computational Systems Biology Bioinformatics Molecular Pathway Formaldehyde Detoxification Maize Methionine Biosynthesis Activated Methyl Cycle Folate-Mediated Pathways
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部