期刊文献+

Differences in Root Growth and Permeability in the Grafted Combinations of Dutch Tomato Cultivars (Starbuck and Maxifort) and Japanese Cultivars (Reiyo, Receive, and Magnet)

Differences in Root Growth and Permeability in the Grafted Combinations of Dutch Tomato Cultivars (Starbuck and Maxifort) and Japanese Cultivars (Reiyo, Receive, and Magnet)
下载PDF
导出
摘要 Grafting is widely established in agriculture and provides practical advantages for vegetable production. We investigated physiological differences between the grafted combinations of Dutch (Starbuck and Maxifort) and Japanese (Reiyo, Receive and Magnet) tomato cultivars. Plants were grown hydroponically until the flowers on the first truss bloomed, and the following parameters were measured: fresh weight of the aerial parts, root surface area, root permeability (by using a pressure chamber), and water potential of exudates (by using an isopiestic psychrometer). The Starbuck/Maxifort combination had higher values of the aerial part weight, root surface area, and root permeability than Reiyo/Receive, whereas Reiyo/Maxifort tended to have higher values of these parameters than Reiyo/Receive and Reiyo/Magnet. Maxifort had a significantly larger root surface area than Receive, but root permeability was not significantly different. InReiyo/Maxifort and Starbuck/Receive, these parameters were not significantly different except for a single comparison of root permeability. Thus, root permeability and root surface area may depend not only on the rootstock but be also affected by scion in grafted plants. Water potential of exudates was similar in most combinations and experiments. This shows that three rootstock cultivars provided similar nutrient concentrations even with different scions. Grafting is widely established in agriculture and provides practical advantages for vegetable production. We investigated physiological differences between the grafted combinations of Dutch (Starbuck and Maxifort) and Japanese (Reiyo, Receive and Magnet) tomato cultivars. Plants were grown hydroponically until the flowers on the first truss bloomed, and the following parameters were measured: fresh weight of the aerial parts, root surface area, root permeability (by using a pressure chamber), and water potential of exudates (by using an isopiestic psychrometer). The Starbuck/Maxifort combination had higher values of the aerial part weight, root surface area, and root permeability than Reiyo/Receive, whereas Reiyo/Maxifort tended to have higher values of these parameters than Reiyo/Receive and Reiyo/Magnet. Maxifort had a significantly larger root surface area than Receive, but root permeability was not significantly different. InReiyo/Maxifort and Starbuck/Receive, these parameters were not significantly different except for a single comparison of root permeability. Thus, root permeability and root surface area may depend not only on the rootstock but be also affected by scion in grafted plants. Water potential of exudates was similar in most combinations and experiments. This shows that three rootstock cultivars provided similar nutrient concentrations even with different scions.
机构地区 School of Agriculture
出处 《American Journal of Plant Sciences》 2015年第16期2640-2650,共11页 美国植物学期刊(英文)
关键词 ISOPIESTIC PSYCHROMETER Pressure Chamber Root Surface Water Potential Isopiestic Psychrometer Pressure Chamber Root Surface Water Potential
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部