期刊文献+

Impact of Expressing p-Coumaryl Transferase in Medicago sativa L. on Cell Wall Chemistry and Digestibility 被引量:1

Impact of Expressing p-Coumaryl Transferase in Medicago sativa L. on Cell Wall Chemistry and Digestibility
下载PDF
导出
摘要 The addition of p-coumaric acid (pCA) to lignin molecules is frequently found in members of the grass family. The role of this addition is not clearly understood, but is thought to potentially aid in the formation of syringyl-type lignin. This is because the incorporation is as a conjugate of pCA ester linked to sinapyl alcohol, a major component of lignin. The forage legume alfalfa (Medicago sativa L.) does not contain appreciable levels of pCA in its more heavily lignified stem tissues. The maize p-coumaryltransferase (pCAT) gene was used to transform alfalfa to determine its impact upon lignin composition and its potential to alter cell wall digestibility. A constitutive expression vector using the cassava vein mosaic virus (CsVMV) promoter was used to drive expression of maize pCAT in alfalfa. Expression of the pCAT transgene was detected in both leaves and stems. Though there was a range of pCAconcentration in transformed alfalfa stems (0.2 - 1.79 micrograms (μg)), this was a clear increase over bound pCA in control stems (0.15 - 0.2 mean = 0.17 micrograms (μg)). This did not lead to consistent responses concerning total lignin in the stem tissues. Leaf tissue, on the other hand, already has a relatively high level of pCA (0.85 - 1.2, mean = 0.99 micrograms (μg)) and those expressing pCAT gene showed on average a small increase, but there is a wide range of values among the transformants (0.38 - 1.55, mean = 1.06 micrograms (μg)). Lignin in leaves did not appear to be significantly impacted. However, incorporation of pCA into the wall appears to cause a shift in lignin composition. Testing the pCAT expressing stem cell walls for digestibility using a rumen in vitro system showed there was no change in the digestibility of the stem compared to empty vectors and control alfalfa stems. Although expression of pCAT gene in alfalfa changes the amount of wall bound pCA, it does not appear to change lignin levels or impact digestibility. The addition of p-coumaric acid (pCA) to lignin molecules is frequently found in members of the grass family. The role of this addition is not clearly understood, but is thought to potentially aid in the formation of syringyl-type lignin. This is because the incorporation is as a conjugate of pCA ester linked to sinapyl alcohol, a major component of lignin. The forage legume alfalfa (Medicago sativa L.) does not contain appreciable levels of pCA in its more heavily lignified stem tissues. The maize p-coumaryltransferase (pCAT) gene was used to transform alfalfa to determine its impact upon lignin composition and its potential to alter cell wall digestibility. A constitutive expression vector using the cassava vein mosaic virus (CsVMV) promoter was used to drive expression of maize pCAT in alfalfa. Expression of the pCAT transgene was detected in both leaves and stems. Though there was a range of pCAconcentration in transformed alfalfa stems (0.2 - 1.79 micrograms (μg)), this was a clear increase over bound pCA in control stems (0.15 - 0.2 mean = 0.17 micrograms (μg)). This did not lead to consistent responses concerning total lignin in the stem tissues. Leaf tissue, on the other hand, already has a relatively high level of pCA (0.85 - 1.2, mean = 0.99 micrograms (μg)) and those expressing pCAT gene showed on average a small increase, but there is a wide range of values among the transformants (0.38 - 1.55, mean = 1.06 micrograms (μg)). Lignin in leaves did not appear to be significantly impacted. However, incorporation of pCA into the wall appears to cause a shift in lignin composition. Testing the pCAT expressing stem cell walls for digestibility using a rumen in vitro system showed there was no change in the digestibility of the stem compared to empty vectors and control alfalfa stems. Although expression of pCAT gene in alfalfa changes the amount of wall bound pCA, it does not appear to change lignin levels or impact digestibility.
作者 Jane M. Marita Dave Rancour Ronald Hatfield Paul Weimer Jane M. Marita;Dave Rancour;Ronald Hatfield;Paul Weimer(CWBURU of U.S. Dairy Forage Research Center, Madison, WI, USA)
出处 《American Journal of Plant Sciences》 2016年第17期2553-2569,共18页 美国植物学期刊(英文)
关键词 ALFALFA p-Coumarate Cell Wall Lignin DIGESTIBILITY Alfalfa p-Coumarate Cell Wall Lignin Digestibility
  • 相关文献

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部