摘要
Genetic variation developed in plant breeding programs is fundamental to creating new combinations that result in cultivars with enhanced characteristics. Over the years, tomato (Solanum lycopersicum) breeding programs associated with the Texas A&M University system have developed morphologically diverse lines of tomatoes selected for heat tolerance, fruit quality, and disease resistance to adapt them to Texas growing conditions. Here we explored the intraspecific genetic variations of 322 cultivated tomato genotypes, including 300 breeding lines developed by three Texas A&M breeding programs, as an initial step toward implementing molecular breeding approaches. Genotyping by sequencing using low coverage whole-genome sequencing (SkimGBS) identified 10,236 high-quality single-nucleotide polymorphisms (SNPs) that were used to assess genetic diversity, population structure, and phylogenetic relationship between genotypes and breeding programs. Model-based population structure analysis, phylogenetic tree construction, and principal component analysis indicated that the genotypes were grouped into two main clusters. Genetic distance analysis revealed greater genetic diversity? among the products of the three breeding programs. The germplasm developed at Texas A&M programs at Weslaco, College Station, and by Dr. Paul Leeper exhibited genetic diversity ranges of 0.175 - 0.434, 0.099 - 0.392, and 0.183 - 0.347, respectively, suggesting that there is enough variation within and between the lines from the three programs to perform selection for cultivar development. The SNPs identified here could be used to develop molecular tools for selecting various traits of interest and to select parents for future tomato breeding.
Genetic variation developed in plant breeding programs is fundamental to creating new combinations that result in cultivars with enhanced characteristics. Over the years, tomato (Solanum lycopersicum) breeding programs associated with the Texas A&M University system have developed morphologically diverse lines of tomatoes selected for heat tolerance, fruit quality, and disease resistance to adapt them to Texas growing conditions. Here we explored the intraspecific genetic variations of 322 cultivated tomato genotypes, including 300 breeding lines developed by three Texas A&M breeding programs, as an initial step toward implementing molecular breeding approaches. Genotyping by sequencing using low coverage whole-genome sequencing (SkimGBS) identified 10,236 high-quality single-nucleotide polymorphisms (SNPs) that were used to assess genetic diversity, population structure, and phylogenetic relationship between genotypes and breeding programs. Model-based population structure analysis, phylogenetic tree construction, and principal component analysis indicated that the genotypes were grouped into two main clusters. Genetic distance analysis revealed greater genetic diversity? among the products of the three breeding programs. The germplasm developed at Texas A&M programs at Weslaco, College Station, and by Dr. Paul Leeper exhibited genetic diversity ranges of 0.175 - 0.434, 0.099 - 0.392, and 0.183 - 0.347, respectively, suggesting that there is enough variation within and between the lines from the three programs to perform selection for cultivar development. The SNPs identified here could be used to develop molecular tools for selecting various traits of interest and to select parents for future tomato breeding.